Swift编程语言学习2.2——基本运算符(下

 三元条件运算(Ternary Conditional Operator)

三元条件运算的特殊在于它是有三个操作数的运算符,它的原型是问题?答案1:答案2。它简洁地表达依据问题成立与否作出二选一的操作。假设问题成立。返回答案1的结果; 假设不成立,返回答案2的结果。

 

使用三元条件运算简化了下面代码:

 

if question: {
   answer1
}
else {
   answer2
}


这里有个计算表格行高的样例。假设有表头,那行高应比内容高度要高出50像素; 假设没有表头,仅仅需高出20像素。

 

let contentHeight = 40
let hasHeader = true
let rowHeight = contentHeight + (hasHeader? 50 : 20)
// rowHeight 如今是 90


这样写会比下面的代码简洁:

 

let contentHeight = 40
let hasHeader = true
var rowHeight = contentHeight
if hasHeader {
   rowHeight = rowHeight + 50
} else {
   rowHeight = rowHeight + 20
}
// rowHeight 如今是 90


第一段代码样例使用了三元条件运算。所以一行代码就能让我们得到正确答案。这比第二段代码简洁得多,无需将rowHeight定义成变量。由于它的值无需在if语句中改变。

 

三元条件运算提供有效率且便捷的方式来表达二选一的选择。

须要注意的事,过度使用三元条件运算就会由简洁的代码变成难懂的代码。

我们应避免在一个组合语句使用多个三元条件运算符。

 

 

区间运算符

Swift 提供了两个方便表达一个区间的值的运算符。

 

闭区间运算符

闭区间运算符(a...b)定义一个包含从a到b(包含a和b)的全部值的区间。 ‌ 闭区间运算符在迭代一个区间的全部值时是很实用的,如在for-in循环中:

 

for index in 1...5 {
     println("\(index) * 5 = \(index * 5)")
}
// 1 * 5 = 5
// 2 * 5 = 10
// 3 * 5 = 15
// 4 * 5 = 20
// 5 * 5 = 25


关于for-in。请看控制流。

 

半闭区间

半闭区间(a..b)定义一个从a到b但不包含b的区间。之所以称为半闭区间,是由于该区间包含第一个值而不包含最后的值。

 

半闭区间的实用性在于当你使用一个0始的列表(如数组)时,很方便地从0数到列表的长度。

 

let names = ["Anna","Alex", "Brian", "Jack"]
let count = names.count
for i in 0..count {
   println("第 \(i + 1) 个人叫 \(names[i])")
}
// 第 1 个人叫 Anna
// 第 2 个人叫 Alex
// 第 3 个人叫 Brian
// 第 4 个人叫 Jack


数组有4个元素。但0..count仅仅数到3(最后一个元素的下标)。由于它是半闭区间。关于数组,请查阅数组。

 

 

逻辑运算

逻辑运算的操作对象是逻辑布尔值。Swift 支持基于 C 语言的三个标准逻辑运算。

 

逻辑非(!a)

逻辑与(a && b)

逻辑或(a || b)

逻辑非

逻辑非运算(!a)对一个布尔值取反,使得true变false,false变true。

 

它是一个前置运算符。需出如今操作数之前,且不加空格。读作非 a,然后我们看下面样例:

 

let allowedEntry = false
if !allowedEntry {
   println("ACCESS DENIED")
}
// 输出 "ACCESSDENIED"


if!

allowedEntry语句能够读作 "假设 非 alowed entry。",接下一行代码仅仅有在假设"非 allow entry" 为true。即allowEntry为false时被运行。

 

在演示样例代码中,小心地选择布尔常量或变量有助于代码的可读性,而且避免使用双重逻辑非运算,或混乱的逻辑语句。

 

逻辑与

逻辑与(a && b)表达了仅仅有a和b的值都为true时,整个表达式的值才会是true。

 

仅仅要随意一个值为false,整个表达式的值就为false。其实。假设第一个值为false,那么是不去计算第二个值的,由于它已经不可能影响整个表达式的结果了。

这被称做 "短路计算(short-circuit evaluation)"。

 

下面样例。仅仅有两个Bool值都为true值的时候才同意进入:

 

let enteredDoorCode = true
let passedRetinaScan = false
if enteredDoorCode &&passedRetinaScan {
   println("Welcome!")
} else {
   println("ACCESS DENIED")
}
// 输出 "ACCESSDENIED"


逻辑或

逻辑或(a || b)是一个由两个连续的|组成的中置运算符。

它表示了两个逻辑表达式的当中一个为true,整个表达式就为true。

 

同逻辑与运算相似,逻辑或也是"短路计算"的,当左端的表达式为true时,将不计算右边的表达式了,由于它不可能改变整个表达式的值了。

 

下面演示样例代码中,第一个布尔值(hasDoorKey)为false,但第二个值(knowsOverridePassword)为true。所以整个表达是true。于是同意进入:

 

let hasDoorKey = false
let knowsOverridePassword = true
if hasDoorKey || knowsOverridePassword {
    println("Welcome!")
} else {
   println("ACCESS DENIED")
}
// 输出"Welcome!"


组合逻辑

我们能够组合多个逻辑运算来表达一个复合逻辑:

 

if enteredDoorCode &&passedRetinaScan || hasDoorKey || knowsOverridePassword {
   println("Welcome!")
} else {
   println("ACCESS DENIED")
}
// 输出 "Welcome!"


这个样例使用了含多个&&和||的复合逻辑。

但不管如何,&&和||始终仅仅能操作两个值。所以这实际是三个简单逻辑连续操作的结果。我们来解读一下:

 

假设我们输入了正确的password并通过了视网膜扫描; 或者我们有一把有效的钥匙; 又或者我们知道紧急情况下重置的password,我们就能把门打开进入。

 

前两种情况,我们都不满足,所曾经两个简单逻辑的结果是false,可是我们是知道紧急情况下重置的password的。所以整个复杂表达式的值还是true。

 

使用括号来明白优先级

为了一个复杂表达式更easy读懂,在合适的地方使用括号来明白优先级是很有效的,尽管它并不是必要的。在上个关于门的权限的样例中。我们给第一个部分加个括号,使用它看起来逻辑更明白:

 

if (enteredDoorCode &&passedRetinaScan) || hasDoorKey || knowsOverridePassword {
   println("Welcome!")
} else {
   println("ACCESS DENIED")
}
// 输出"Welcome!"


这括号使得前两个值被看成整个逻辑表达中独立的一个部分。尽管有括号和没括号的输出结果是一样的,但对于读代码的人来说有括号的代码更清晰。可读性比简洁性更重要,请在能够让你代码变清晰地地方加个括号吧!


原文地址:https://www.cnblogs.com/mqxnongmin/p/10929095.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


软件简介:蓝湖辅助工具,减少移动端开发中控件属性的复制和粘贴.待开发的功能:1.支持自动生成约束2.开发设置页面3.做一个浏览器插件,支持不需要下载整个工程,可即时操作当前蓝湖浏览页面4.支持Flutter语言模板生成5.支持更多平台,如Sketch等6.支持用户自定义语言模板
现实生活中,我们听到的声音都是时间连续的,我们称为这种信号叫模拟信号。模拟信号需要进行数字化以后才能在计算机中使用。目前我们在计算机上进行音频播放都需要依赖于音频文件。那么音频文件如何生成的呢?音频文件的生成过程是将声音信息采样、量化和编码产生的数字信号的过程,我们人耳所能听到的声音频率范围为(20Hz~20KHz),因此音频文件格式的最大带宽是20KHZ。根据奈奎斯特的理论,音频文件的采样率一般在40~50KHZ之间。奈奎斯特采样定律,又称香农采样定律。...............
前言最近在B站上看到一个漂亮的仙女姐姐跳舞视频,循环看了亿遍又亿遍,久久不能离开!看着小仙紫姐姐的蹦迪视频,除了一键三连还能做什么?突发奇想,能不能把舞蹈视频转成代码舞呢?说干就干,今天就手把手教大家如何把跳舞视频转成代码舞,跟着仙女姐姐一起蹦起来~视频来源:【紫颜】见过仙女蹦迪吗 【千盏】一、核心功能设计总体来说,我们需要分为以下几步完成:从B站上把小姐姐的视频下载下来对视频进行截取GIF,把截取的GIF通过ASCII Animator进行ASCII字符转换把转换的字符gif根据每
【Android App】实战项目之仿抖音的短视频分享App(附源码和演示视频 超详细必看)
前言这一篇博客应该是我花时间最多的一次了,从2022年1月底至2022年4月底。我已经将这篇博客的内容写为论文,上传至arxiv:https://arxiv.org/pdf/2204.10160.pdf欢迎大家指出我论文中的问题,特别是语法与用词问题在github上,我也上传了完整的项目:https://github.com/Whiffe/Custom-ava-dataset_Custom-Spatio-Temporally-Action-Video-Dataset关于自定义ava数据集,也是后台
因为我既对接过session、cookie,也对接过JWT,今年因为工作需要也对接了gtoken的2个版本,对这方面的理解还算深入。尤其是看到官方文档评论区又小伙伴表示看不懂,所以做了这期视频内容出来:视频在这里:本期内容对应B站的开源视频因为涉及的知识点比较多,视频内容比较长。如果你觉得看视频浪费时间,可以直接阅读源码:goframe v2版本集成gtokengoframe v1版本集成gtokengoframe v2版本集成jwtgoframe v2版本session登录官方调用示例文档jwt和sess
【Android App】实战项目之仿微信的私信和群聊App(附源码和演示视频 超详细必看)
用Android Studio的VideoView组件实现简单的本地视频播放器。本文将讲解如何使用Android视频播放器VideoView组件来播放本地视频和网络视频,实现起来还是比较简单的。VideoView组件的作用与ImageView类似,只是ImageView用于显示图片,VideoView用于播放视频。...
采用MATLAB对正弦信号,语音信号进行生成、采样和内插恢复,利用MATLAB工具箱对混杂噪声的音频信号进行滤波
随着移动互联网、云端存储等技术的快速发展,包含丰富信息的音频数据呈现几何级速率增长。这些海量数据在为人工分析带来困难的同时,也为音频认知、创新学习研究提供了数据基础。在本节中,我们通过构建生成模型来生成音频序列文件,从而进一步加深对序列数据处理问题的了解。
基于yolov5+deepsort+slowfast算法的视频实时行为检测。1. yolov5实现目标检测,确定目标坐标 2. deepsort实现目标跟踪,持续标注目标坐标 3. slowfast实现动作识别,并给出置信率 4. 用框持续框住目标,并将动作类别以及置信度显示在框上
数字电子钟设计本文主要完成数字电子钟的以下功能1、计时功能(24小时)2、秒表功能(一个按键实现开始暂停,另一个按键实现清零功能)3、闹钟功能(设置闹钟以及到时响10秒)4、校时功能5、其他功能(清零、加速、星期、八位数码管显示等)前排提示:前面几篇文章介绍过的内容就不详细介绍了,可以看我专栏的前几篇文章。PS.工程文件放在最后面总体设计本次设计主要是在前一篇文章 数字电子钟基本功能的实现 的基础上改编而成的,主要结构不变,分频器将50MHz分为较低的频率备用;dig_select
1.进入官网下载OBS stdioOpen Broadcaster Software | OBS (obsproject.com)2.下载一个插件,拓展OBS的虚拟摄像头功能链接:OBS 虚拟摄像头插件.zip_免费高速下载|百度网盘-分享无限制 (baidu.com)提取码:6656--来自百度网盘超级会员V1的分享**注意**该插件必须下载但OBS的根目录(应该是自动匹配了的)3.打开OBS,选中虚拟摄像头选择启用在底部添加一段视频录制选择下面,进行录制.
Meta公司在9月29日首次推出一款人工智能系统模型:Make-A-Video,可以从给定的文字提示生成短视频。基于**文本到图像生成技术的最新进展**,该技术旨在实现文本到视频的生成,可以仅用几个单词或几行文本生成异想天开、独一无二的视频,将无限的想象力带入生活
音频信号叠加噪声及滤波一、前言二、信号分析及加噪三、滤波去噪四、总结一、前言之前一直对硬件上的内容比较关注,但是可能是因为硬件方面的东西可能真的是比较杂,而且需要渗透的东西太多了,所以学习进展比较缓慢。因为也很少有单纯的硬件学习研究,总是会伴随着各种理论需要硬件做支撑,所以还是想要慢慢接触理论学习。但是之前总找不到切入点,不知道从哪里开始,就一直拖着。最近稍微接触了一点信号处理,就用这个当作切入点,开始接触理论学习。二、信号分析及加噪信号处理选用了matlab做工具,选了一个最简单的语音信号处理方
腾讯云 TRTC 实时音视频服务体验,从认识 TRTC 到 TRTC 的开发实践,Demo 演示& IM 服务搭建。
音乐音频分类技术能够基于音乐内容为音乐添加类别标签,在音乐资源的高效组织、检索和推荐等相关方面的研究和应用具有重要意义。传统的音乐分类方法大量使用了人工设计的声学特征,特征的设计需要音乐领域的知识,不同分类任务的特征往往并不通用。深度学习的出现给更好地解决音乐分类问题提供了新的思路,本文对基于深度学习的音乐音频分类方法进行了研究。首先将音乐的音频信号转换成声谱作为统一表示,避免了手工选取特征存在的问题,然后基于一维卷积构建了一种音乐分类模型。
C++知识精讲16 | 井字棋游戏(配资源+视频)【赋源码,双人对战】
本文主要讲解如何在Java中,使用FFmpeg进行视频的帧读取,并最终合并成Gif动态图。
在本篇博文中,我们谈及了 Swift 中 some、any 关键字以及主关联类型(primary associated types)的前世今生,并由浅及深用简明的示例向大家讲解了它们之间的奥秘玄机。