c – 将立方体贴图转换为Equirectangular全景图

我想从立方体贴图[figure1]转换为equirectangular全景[figure2].

图1

Figure1


Figure2

enter image description here

有可能从球形到立方体(通过以下方式:Convert 2:1 equirectangular panorama to cube map),但在如何反转它时失败了.

图2将使用Unity渲染为球体.

解决方法:

假设输入图像采用以下立方体贴图格式:

Cubemap image

目标是将图像投影到equirectangular格式,如下所示:

Equirectangular image

转换算法相当简单.
在给定具有6个面的立方体贴图的情况下,为了计算equirectangular图像中每个像素的颜色的最佳估计:

>首先,计算与每个像素对应的极坐标
球形图像.
>其次,使用极坐标形成矢量并确定
立方体贴图的哪个面以及面向矢量的哪个像素
谎言;就像从立方体中心发出的光线投射一样
它的侧面和那边的特定点.

请记住,在立方图的特定面上给定标准化坐标(u,v)的情况下,有多种方法可以估算等距矩形图像中像素的颜色.最基本的方法是非常原始的近似,并且为了简单起见将在本答案中使用,是将坐标舍入到特定像素并使用该像素.其他更高级的方法可以计算几个相邻像素的平均值.

算法的实现将根据上下文而变化.我在Unity3D C#中进行了快速实现,演示了如何在真实场景中实现该算法.它运行在CPU上,还有很大的改进空间,但很容易理解.

using UnityEngine;

public static class CubemapConverter
{
    public static byte[] ConvertToEquirectangular(Texture2D sourceTexture, int outputWidth, int outputHeight)
    {
        Texture2D equiTexture = new Texture2D(outputWidth, outputHeight, TextureFormat.ARGB32, false);
        float u, v; //Normalised texture coordinates, from 0 to 1, starting at lower left corner
        float phi, theta; //Polar coordinates
        int cubeFaceWidth, cubeFaceHeight;

        cubeFaceWidth = sourceTexture.width / 4; //4 horizontal faces
        cubeFaceHeight = sourceTexture.height / 3; //3 vertical faces


        for (int j = 0; j < equiTexture.height; j++)
        {
            //Rows start from the bottom
            v = 1 - ((float)j / equiTexture.height);
            theta = v * Mathf.PI;

            for (int i = 0; i < equiTexture.width; i++)
            {
                //Columns start from the left
                u = ((float)i / equiTexture.width);
                phi = u * 2 * Mathf.PI;

                float x, y, z; //Unit vector
                x = Mathf.Sin(phi) * Mathf.Sin(theta) * -1;
                y = Mathf.Cos(theta);
                z = Mathf.Cos(phi) * Mathf.Sin(theta) * -1;

                float xa, ya, za;
                float a;

                a = Mathf.Max(new float[3] { Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z) });

                //Vector Parallel to the unit vector that lies on one of the cube faces
                xa = x / a;
                ya = y / a;
                za = z / a;

                Color color;
                int xPixel, yPixel;
                int xOffset, yOffset;

                if (xa == 1)
                {
                    //Right
                    xPixel = (int)((((za + 1f) / 2f) - 1f) * cubeFaceWidth);
                    xOffset = 2 * cubeFaceWidth; //Offset
                    yPixel = (int)((((ya + 1f) / 2f)) * cubeFaceHeight);
                    yOffset = cubeFaceHeight; //Offset
                }
                else if (xa == -1)
                {
                    //Left
                    xPixel = (int)((((za + 1f) / 2f)) * cubeFaceWidth);
                    xOffset = 0;
                    yPixel = (int)((((ya + 1f) / 2f)) * cubeFaceHeight);
                    yOffset = cubeFaceHeight;
                }
                else if (ya == 1)
                {
                    //Up
                    xPixel = (int)((((xa + 1f) / 2f)) * cubeFaceWidth);
                    xOffset = cubeFaceWidth;
                    yPixel = (int)((((za + 1f) / 2f) - 1f) * cubeFaceHeight);
                    yOffset = 2 * cubeFaceHeight;
                }
                else if (ya == -1)
                {
                    //Down
                    xPixel = (int)((((xa + 1f) / 2f)) * cubeFaceWidth);
                    xOffset = cubeFaceWidth;
                    yPixel = (int)((((za + 1f) / 2f)) * cubeFaceHeight);
                    yOffset = 0;
                }
                else if (za == 1)
                {
                    //Front
                    xPixel = (int)((((xa + 1f) / 2f)) * cubeFaceWidth);
                    xOffset = cubeFaceWidth;
                    yPixel = (int)((((ya + 1f) / 2f)) * cubeFaceHeight);
                    yOffset = cubeFaceHeight;
                }
                else if (za == -1)
                {
                    //Back
                    xPixel = (int)((((xa + 1f) / 2f) - 1f) * cubeFaceWidth);
                    xOffset = 3 * cubeFaceWidth;
                    yPixel = (int)((((ya + 1f) / 2f)) * cubeFaceHeight);
                    yOffset = cubeFaceHeight;
                }
                else
                {
                    Debug.LogWarning("Unknown face, something went wrong");
                    xPixel = 0;
                    yPixel = 0;
                    xOffset = 0;
                    yOffset = 0;
                }

                xPixel = Mathf.Abs(xPixel);
                yPixel = Mathf.Abs(yPixel);

                xPixel += xOffset;
                yPixel += yOffset;

                color = sourceTexture.GetPixel(xPixel, yPixel);
                equiTexture.SetPixel(i, j, color);
            }
        }

        equiTexture.Apply();
        var bytes = equiTexture.EncodeToPNG();
        Object.DestroyImmediate(equiTexture);

        return bytes;
    }
}

为了利用GPU,我创建了一个执行相同转换的着色器.它比在CPU上逐像素地运行转换要快得多,但不幸的是Unity对立方体贴图施加了分辨率限制,因此在使用高分辨率输入图像的情况下它的有用性受到限制.

Shader "Conversion/CubemapToEquirectangular" {
  Properties {
        _MainTex ("Cubemap (RGB)", CUBE) = "" {}
    }

    Subshader {
        Pass {
            ZTest Always Cull Off ZWrite Off
            Fog { Mode off }      

            CGPROGRAM
                #pragma vertex vert
                #pragma fragment frag
                #pragma fragmentoption ARB_precision_hint_fastest
                //#pragma fragmentoption ARB_precision_hint_nicest
                #include "UnityCG.cginc"

                #define PI    3.141592653589793
                #define TWOPI 6.283185307179587

                struct v2f {
                    float4 pos : POSITION;
                    float2 uv : TEXCOORD0;
                };

                samplerCUBE _MainTex;

                v2f vert( appdata_img v )
                {
                    v2f o;
                    o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
                    o.uv = v.texcoord.xy * float2(TWOPI, PI);
                    return o;
                }

                fixed4 frag(v2f i) : COLOR 
                {
                    float theta = i.uv.y;
                    float phi = i.uv.x;
                    float3 unit = float3(0,0,0);

                    unit.x = sin(phi) * sin(theta) * -1;
                    unit.y = cos(theta) * -1;
                    unit.z = cos(phi) * sin(theta) * -1;

                    return texCUBE(_MainTex, unit);
                }
            ENDCG
        }
    }
    Fallback Off
}

通过采用更复杂的方法来估计转换期间像素的颜色或通过后处理所得到的图像(或实际上两者),可以极大地改善所得图像的质量.例如,可以生成更大尺寸的图像以应用模糊滤波器,然后将其下采样到期望的大小.

我用两个编辑器向导创建了一个简单的Unity项目,该向导展示了如何正确使用C#代码或上面显示的着色器.在这里得到它:
https://github.com/Mapiarz/CubemapToEquirectangular

请记住在Unity中为输入图像设置正确的导入设置:

>点过滤
> Truecolor格式
>禁用mipmap
> 2的非幂:无(仅适用于2D纹理)
>启用读/写(仅适用于2D纹理)

原文地址:https://codeday.me/bug/20190930/1835648.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


这篇文章将为大家详细讲解有关Unity3D中如何通过Animator动画状态机获取任意animation clip的准确播放持续时长,小编觉得挺实用的,因此分享给大家做个参考,
这篇文章主要介绍了Unity3D如何播放游戏视频,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解
这篇文章给大家分享的是有关Unity3D各平台路径是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1、Resources路径 Reso...
小编给大家分享一下Unity3D如何实现移动平台上的角色阴影,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!由于目前主流使用Unity3.x在移动平...
如何解析基于Unity3D的平坦四叉树地形与Virtual Texture的分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希
这篇文章主要介绍Unity3D如何实现动态分辨率降低渲染开销,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!之前项目降低分辨率我们都普...
这篇文章主要介绍了unity3d中如何使用屏幕空间改善shadowmap漏光,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编...
这篇文章主要介绍unity3d如何实现基于屏幕空间的描边,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!Outline(Based on Image Space)由...
这篇文章给大家分享的是有关unity3d中导入fbx时的Scale是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。在Unity中点击GameOb...
这篇文章主要为大家展示了“unity3d中如何实现ttc转ttf及制作字体”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习
这篇文章主要介绍了unity3d中水彩风渲染有什么用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了...
这篇文章将为大家详细讲解有关unity3d中图像压缩原理是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1 图像可压缩...
这篇文章给大家分享的是有关unity3d中光照公式有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。漫反射、高光、物理渲染(PBR...
小编给大家分享一下unity3d中光照探针的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我...
这篇文章将为大家详细讲解有关Unity3D中Rendering Paths及LightMode的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有
这篇文章将为大家详细讲解有关unity3d中图形学的光照原理是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。首先,在...
这篇文章给大家分享的是有关unity3d中图片渲染流程是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。相关名词GPU(Graphic Pr...
本篇我们来介绍一下左侧工具栏中基本绘制的应用。 一、墙体绘制直墙 & 矩形墙绘制墙体时,可以看到上方的工具栏中对墙体进行参数的设定。 弧形墙在建筑版的户...
xlua是由腾讯维护的一个开源项目,我们可以在github上下载这个开源项目并查看一些相关文档官网:https://github.com/Tencent/xLua配置文档:https://github.com/Tencent/xLua/blob/master/Assets/XLua/Doc/hotfix.md常见问题解答:https://github.com/Tencent/xLua/blob/master/Assets/
我们都知道,一个三维场景的画面的好坏,百分之四十取决于模型,百分之六十取决于贴图,可见贴图在画面中所占的重要性。在这里我将列举一些贴图,并且初步阐述其概念,理解原理的基础上制作贴图,也就顺手多了。我在这里主要列举几种UNITY3D中常用的贴图,与大家分享,希望对大家有帮助。01 首先