Redis高级篇之最佳实践

Redis高级篇之最佳实践

本章内容

  • Redis 键值设计
  • 批处理优化
  • 服务端优化
  • 集群最佳实践

笔记整理自 b站_黑马程序员Redis入门到实战教程

1. Redis键值设计

优雅的key结构

Redis 的 Key 虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过 44 字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其 key 可以设计成如下格式:

image-20221214204312778

这样设计的好处:

  • 可读性强
  • 避免 key 冲突
  • 方便管理
  • 更节省内存: key 是 string 类型,底层编码包含 int、embstr 和 raw 三种。embstr 在小于 44 字节使用,采用连续内存空间,内存占用更小。当字节数大于 44 字节时,会转为 raw 模式存储,在 raw 模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储 SDS 内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片。

image-20221214212715997

拒绝BigKey

BigKey 通常以 Key 的大小和 Key 中成员的数量来综合判定,例如:

  • Key 本身的数据量过大:一个 String 类型的 Key,它的值为 5MB
  • Key 中的成员数过多:一个 ZSET 类型的 Key,它的成员数量为 10,000 个
  • Key 中成员的数据量过大:一个 Hash 类型的 Key,它的成员数量虽然只有 1,000 个但这些成员的 Value(值)总大小为 100 MB

那么如何判断元素的大小呢?redis 也给我们提供了命令:

image-20221214212719144

推荐值:

  • 单个 key 的 value 小于 10KB
  • 对于集合类型的 key,建议元素数量小于 1000
BigKey的危害
  • 网络阻塞
    • 对 BigKey 执行读请求时,少量的 QPS 就可能导致带宽使用率被占满,导致 Redis 实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey 所在的 Redis 实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis 阻塞
    • 对元素较多的 hash、list、zset 等做运算会耗时较久,使主线程被阻塞
  • CPU 压力
    • 对 BigKey 的数据序列化和反序列化会导致 CPU 的使用率飙升,影响 Redis 实例和本机其它应用
如何发现BigKey
① redis-cli --bigkeys

利用 redis-cli 提供的 --bigkeys 参数,可以遍历分析所有 key,并返回 key 的整体统计信息与每个数据的 Top1 的 BigKey。

命令:redis-cli -a 密码 --bigkeys

image-20221215111434527

② scan扫描

自己编程,利用 scan 扫描 Redis 中的所有 key,利用 strlen、hlen 等命令判断 key 的长度(此处不建议使用 MEMORY USAGE)

image-20221215111431967

scan 命令调用完后每次会返回 2 个元素,第一个是下一次迭代的光标,第一次光标会设置为 0,当最后一次 scan 返回的光标等于 0 时,表示整个 scan 遍历结束了,第二个返回的是 List,一个匹配的 key 的数组。

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101",6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    final static int STR_MAX_LEN = 10 * 1024;
    final static int HASH_MAX_LEN = 500;

    @Test
    void testScan() {
        int maxLen = 0;
        long len = 0;

        String cursor = "0";
        do {
            // 扫描并获取一部分key
            ScanResult<String> result = jedis.scan(cursor);
            // 记录cursor
            cursor = result.getCursor();
            List<String> list = result.getResult();
            if (list == null || list.isEmpty()) {
                break;
            }
            // 遍历
            for (String key : list) {
                // 判断key的类型
                String type = jedis.type(key);
                switch (type) {
                    case "string":
                        len = jedis.strlen(key);
                        maxLen = STR_MAX_LEN;
                        break;
                    case "hash":
                        len = jedis.hlen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "list":
                        len = jedis.llen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "set":
                        len = jedis.scard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "zset":
                        len = jedis.zcard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    default:
                        break;
                }
                if (len >= maxLen) {
                    System.out.printf("Found big key : %s,type: %s,length or size: %d %n", key, type, len);
                }
            }
        } while (!cursor.equals("0"));
    }
    
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }

}

image-20221215110256197

③ 第三方工具
  • 利用第三方工具,如 Redis-Rdb-Tools 分析 RDB 快照文件,全面分析内存使用情况。
    • 离线分析,对于 Redis 的性能没有任何的损耗,但这种离线分析会有一些时效上的差异,并不一定是最新的。
  • https://github.com/sripathikrishnan/redis-rdb-tools
④ 网络监控
  • 自定义工具,监控进出 Redis 的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

image-20221215111426918

如何删除BigKey

BigKey 内存占用较多,即便时删除这样的 key 也需要耗费很长时间,导致 Redis 主线程阻塞,引发一系列问题。

  • Redis 3.0 及以下版本
    • 如果是集合类型,则遍历 BigKey 的元素,先逐个删除子元素,最后删除 BigKey

      image-20220521140621204

  • Redis 4.0 以后
    • Redis 在 4.0 后提供了异步删除的命令:unlink

      image-20221215111206688

恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:
① 方式一:json字符串
user:1 {"name": "Jack","age": 21}
  • 优点:实现简单粗暴
  • 缺点:数据耦合,不够灵活
② 方式二:字段打散
user:1:name Jack
user:1:age 21
  • 优点:可以灵活访问对象任意字段
  • 缺点:占用空间大、没办法做统一控制
③ 方式三:hash(推荐)✅
user:1 name jack
age 21
  • 优点:底层使用 ziplist,空间占用小,可以灵活访问对象的任意字段
  • 缺点:代码相对复杂

例2:假如有 hash 类型的 key,其中有 100 万对 field 和 value,field 是自增 id,这个 key 存在什么问题?如何优化?
key field value
someKey id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • hash 的 entry 数量超过 500 时,会使用哈希表而不是 ZipList,内存占用较多

    image-20221215112140203

  • 可以通过 hash-max-ziplist-entries 配置 entry 上限。但是如果 entry 过多就会导致 BigKey 问题

方案一

拆分为 string 类型

key value
id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • string 结构底层没有太多内存优化,内存占用较多

image-20221215114611799

  • 想要批量获取这些数据比较麻烦
方案二

拆分为小的 hash,将 id / 100 作为 key, 将 id % 100 作为 field,这样每 100 个元素为一个 Hash

key field value
key:0 id:00 value0
..... .....
id:99 value99
key:1 id:00 value100
..... .....
id:99 value199
....
key:9999 id:00 value999900
..... .....
id:99 value999999

image-20221215112329843

package com.heima.test;

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101",6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testSetBigKey() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 650; i++) {
            map.put("hello_" + i, "world!");
        }
        jedis.hmset("m2", map);
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
        }
        jedis.hmset("test:big:hash", map);
    }

    @Test
    void testBigString() {
        for (int i = 1; i <= 100000; i++) {
            jedis.set("test:str:key_" + i, "value_" + i);
        }
    }

    @Test
    void testSmallHash() {
        int hashSize = 100;
        Map<String, String> map = new HashMap<>(hashSize);
        for (int i = 1; i <= 100000; i++) {
            int k = (i - 1) / hashSize;
            int v = i % hashSize;
            map.put("key_" + v, "value_" + v);
            if (v == 0) {
                jedis.hmset("test:small:hash_" + k, map);
            }
        }
    }

    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

总结

  • Key 的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过 44 字节
    • 不包含特殊字符
  • Value 的最佳实践:
    • 合理的拆分数据,拒绝 BigKey
    • 选择合适数据结构
    • Hash 结构的 entry 数量不要超过 1000(默认是 500,如果达到上限则底层会使用哈希表而不是 ZipList,内存占用较多)
    • 设置合理的超时时间

2. 批处理优化

Pipeline

我们的客户端与redis服务器是这样交互的
  • 单个命令的执行流程

image-20221215120639998

  • N 条命令的执行流程

image-20221215120642337

  • redis 处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给 redis

image-20221215120644362

MSet

Redis 提供了很多 Mxxx 这样的命令,可以实现批量插入数据,例如:

  • mset
  • hmset

利用 mset 批量插入 10 万条数据

@Test
void testMxx() {
    String[] arr = new String[2000];
    int j;
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        j = (i % 1000) << 1;
        arr[j] = "test:key_" + i;
        arr[j + 1] = "value_" + i;
        if (j == 0) {
            jedis.mset(arr);
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b) + "ms");
}

/*
 * 控制台打印
 * time: 182ms
 */

向 redis 中插入 10w 条数据,如果我们 for 循环执行 10w 次 redis 的插入指令的话,大概需要花费 44s 的时间:

@Test
void testFor() {
    for (int i = 1; i <= 100000; i++) {
        jedis.set("test:key_" + i, "value_" + i);
    }
}

而我们使用 mset 则仅需要 182ms,由此可见批处理的重要性。

Pipeline

MSET 虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用 Pipeline。

@Test
void testPipeline() {
    // 创建管道
    Pipeline pipeline = jedis.pipelined();
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        // 放入命令到管道
        pipeline.set("test:key_" + i, "value_" + i);
        if (i % 1000 == 0) {
            // 每放入1000条命令,批量执行
            pipeline.sync();
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b) + "ms");
}

/*
 * 控制台打印
 * time: 248ms
 */

使用 Pipeline 管道命令,比 mset 命令稍微慢了一点,但也在毫秒级别,可以忽略。

而对于何时使用 Pipeline 和 mset,则要看添加的数据类型,mset 的命令有一定的限制,而 Pipeline 是无限制的,它可以任意命令做组合,key 也可以自定义。

两者还有一个底层的区别:mset 操作为什么会比 Pipeline 要快?

  • 是因为 mset 操作是 redis 内置的操作,它会把这些插入指令作为一个原子性操作,一次性全执行完,中间不会有其他命令插队。

  • 而 Pipeline 则不是,Pipeline 在执行时,这一组命令会发送到 redis 中,但这一组命令不一定是一起执行的,你的命令在发送时,其它客户端也有可能向 redis 发送命令,所以 Pipeline 的执行时长可能会因为别的命令插队 从而比预期时间要长一些。

总结
  • 批量处理的方案:
    • 原生的 M 操作
    • Pipeline 批处理
  • 注意事项:
    • 批处理时不建议一次携带太多命令
    • Pipeline 的多个命令之间不具备原子性

集群下的批处理

如 MSET 或 Pipeline 这样的批处理需要在一次请求中携带多条命令,而此时如果 Redis 是一个集群,那批处理命令的多个 key 必须落在一个插槽中,否则就会导致执行失败。

大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了。

image-20221215154646008

这个时候,我们可以找到 4 种解决方案:

image-20221220153036766

  • 第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。

  • 第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的 key 的 slot,一样 slot 的 key 就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行 pipeline 的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下

  • 第三种方案:并行slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。

  • 第四种方案:hash_tag,redis 计算 key 的 slot 的时候,其实是根据 key 的有效部分来计算的,通过这种方式就能一次处理所有的 key,这种方式耗时最短,实现也简单,但是如果通过操作 key 的有效部分,那么就会导致所有的 key 都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。

    image-20221215155158010

串行化执行代码实践
public class JedisClusterTest {

    private JedisCluster jedisCluster;

    @BeforeEach
    void setUp() {
        // 配置连接池
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        poolConfig.setMaxTotal(8);
        poolConfig.setMaxIdle(8);
        poolConfig.setMinIdle(0);
        poolConfig.setMaxWaitMillis(1000);
        HashSet<HostAndPort> nodes = new HashSet<>();
        nodes.add(new HostAndPort("192.168.150.101", 7001));
        nodes.add(new HostAndPort("192.168.150.101", 7002));
        nodes.add(new HostAndPort("192.168.150.101", 7003));
        nodes.add(new HostAndPort("192.168.150.101", 8001));
        nodes.add(new HostAndPort("192.168.150.101", 8002));
        nodes.add(new HostAndPort("192.168.150.101", 8003));
        jedisCluster = new JedisCluster(nodes, poolConfig);
    }

    @Test
    void testMSet() {
        jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");

    }

    @Test
    void testMSet2() {
        Map<String, String> map = new HashMap<>(3);
        map.put("name", "Jack");
        map.put("age", "21");
        map.put("sex", "Male");
        // 对Map数据进行分组。根据相同的slot放在一个分组
        // key就是slot,value就是一个组
        Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet()
                .stream()
                .collect(Collectors.groupingBy(
                        entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey()))
                );
        // 串行的去执行mset的逻辑
        for (List<Map.Entry<String, String>> list : result.values()) {
            String[] arr = new String[list.size() * 2];
            int j = 0;
            for (int i = 0; i < list.size(); i++) {
                j = i<<2;
                Map.Entry<String, String> e = list.get(0);
                arr[j] = e.getKey();
                arr[j + 1] = e.getValue();
            }
            jedisCluster.mset(arr);
        }
    }

    @AfterEach
    void tearDown() {
        if (jedisCluster != null) {
            jedisCluster.close();
        }
    }
}
Spring集群环境下批处理代码(并行slot)
   @Test
    void testMSetInCluster() {
        Map<String, "Rose");
        map.put("age", "Female");
        stringRedisTemplate.opsForValue().multiSet(map);

        List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "sex"));
        strings.forEach(System.out::println);
    }

原理分析

在 RedisAdvancedClusterAsyncCommandsImpl 类中

首先根据 slotHash 算出来一个 partitioned 的 map,map 中的 key 就是 slot,而他的 value 就是对应的对应相同 slot 的 key 对应的数据

通过 RedisFuture<String> mset = super.mset(op); 进行异步的消息发送(第三种方案:并行 slot)。

@Override
public RedisFuture<String> mset(Map<K, V> map) {

    // 根据传入map中的key计算插槽,插槽一样的 则将这些key存入一个List中
    Map<Integer, List<K>> partitioned = SlotHash.partition(codec, map.keySet());

    if (partitioned.size() < 2) {
        return super.mset(map);
    }

    Map<Integer, RedisFuture<String>> executions = new HashMap<>();

    // 遍历,根据key拿到value
    for (Map.Entry<Integer, List<K>> entry : partitioned.entrySet()) {

        Map<K, V> op = new HashMap<>();
        entry.getValue().forEach(k -> op.put(k, map.get(k)));
		// mset操作,返回值是Future,说明是异步操作(也就是第三种方案:并行slot,最好的方案)
        RedisFuture<String> mset = super.mset(op);
        executions.put(entry.getKey(), mset);
    }

    return MultiNodeExecution.firstOfAsync(executions);
}

3. 服务器端优化-持久化配置

Redis 的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的 Redis 实例尽量不要开启持久化功能
  • 建议关闭 RDB 持久化功能,使用 AOF 持久化
    • 设置合理的 rewrite 阈值,避免频繁的 bgrewrite
    • 配置 no-appendfsync-on-rewrite = yes,禁止在 rewrite 期间做 aof,避免因 AOF 引起的阻塞

image-20221215161404149

  • 利用脚本定期在 slave 节点做 RDB,实现数据备份
  • 部署有关建议:
    • Redis 实例的物理机要预留足够内存,应对 fork 和 rewrite
    • 单个 Redis 实例内存上限不要太大,例如 4G 或 8G。可以加快 fork 的速度、减少主从同步、数据迁移压力
    • 不要与 CPU 密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

4. 服务器端优化-慢查询优化

什么是慢查询

并不是很慢的查询才是慢查询,而是:在 Redis 执行时耗时超过某个阈值的命令,称为慢查询。

慢查询的危害:由于 Redis 是单线程的,所以当客户端发出指令后,他们都会进入到 redis 底层的 queue 来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。

image-20221215120951644

  • 慢查询的阈值可以通过配置指定:
    • slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是 10000,建议 1000。
  • 慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
    • slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是 128,建议 1000。

image-20221215121003527

  • 修改这两个配置可以使用:config set 命令:

image-20221215121005654

如何查看慢查询

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取 n 条慢查询日志
  • slowlog reset:清空慢查询列表

image-20221215160725165

5. 服务器端优化-命令及安全配置

安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。

Redis 会绑定在 0.0.0.0:6379,这样将会将 Redis 服务暴露到公网上,而 Redis 如果没有做身份认证,会出现严重的安全漏洞。

漏洞重现方式:https://cloud.tencent.com/developer/article/1039000

为什么会出现不需要密码也能够登录呢,主要是 Redis 考虑到每次登录都比较麻烦,所以 Redis 就有一种 ssh 免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在 redis 端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用 redis 的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是 Redis 的漏洞在于在不登录的情况下,也能把秘钥送到 Linux 服务器,从而产生漏洞。

漏洞出现的核心的原因有以下几点:

  • Redis 未设置密码
  • 利用了 Redis 的 config set 命令动态修改 Redis 配置
  • 使用了 Root 账号权限启动 Redis

所以:如何解决呢?我们可以采用如下几种方案

为了避免这样的漏洞,这里给出一些建议:

  • Redis 一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set 等命令。可以利用 rename-command 禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用 Root 账户启动 Redis
  • 尽量不是有默认的端口

6. 服务器端优化-Redis内存划分和内存配置

当 Redis 内存不足时,可能导致 Key 频繁被删除、响应时间变长、QPS 不稳定等问题。当内存使用率达到 90% 以上时就需要我们警惕,并快速定位到内存占用的原因。

内存占用 说明
数据内存 是 Redis 最主要的部分,存储 Redis 的键值信息。主要问题是 BigKey 问题、内存碎片问题。
进程内存 Redis 主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;
这部分内存⼤约⼏兆,在⼤多数⽣产环境中与 Redis 数据占⽤的内存相⽐可以忽略。
缓冲区内存 一般包括客户端缓冲区、AOF 缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。
这部分内存占用波动较大,不当使用 BigKey,可能导致内存溢出。

有关碎片问题分析

  • Redis 底层分配并不是这个 key 有多大,他就会分配多大,而是有他自己的分配策略,比如 8,16,20 等等,假定当前 key 只需要 10 个字节,此时分配 8 肯定不够,那么他就会分配 16 个字节,多出来的 6 个字节就不能被使用,这就是我们常说的 碎片问题。
  • 但是碎片问题是不需要我们去考虑的,事实上,我们重启 redis 时,这些碎片就会被自动回收掉了,所以要想解决碎片问题,我们只需要定期的重启 redis 服务即可(当然我们需要按照主从、集群分批的重启)。

进程内存问题分析

  • 这片内存,通常我们都可以忽略不计。

缓冲区内存问题分析

  • 一般包括客户端缓冲区、AOF 缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

于是我们就需要通过一些命令,可以查看到 Redis 目前的内存分配状态:

  • info memory:查看内存分配的情况

image-20221215160516947

  • memory xxx:查看 key 的主要占用情况

image-20221215160531885

接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?

内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的 repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过 replbacklog-size 来设置,默认 1mb。
  • AOF 缓冲区:AOF 刷盘之前的缓存区域,AOF 执行 rewrite 的缓冲区。无法设置容量上限。
  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大 1G 且不能设置。输出缓冲区可以设置。

以上复制缓冲区和 AOF 缓冲区 不会有问题,最关键就是客户端缓冲区的问题。

客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向 redis 输入数据的输入端缓冲区和 redis 向客户端返回数据的响应缓存区,输入缓冲区最大 1G 且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis 会直接断开,因为本来此时此刻就代表着 redis 处理不过来了,我们需要担心的就是输出端缓冲区。

image-20221216165938604

我们在使用 redis 过程中,处理大量的 big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致 redis 直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的 redis 断开,所以解决方案有两个:

  • 设置一个大小
  • 增加我们带宽的大小,避免我们出现大量数据从而直接超过了 redis 的承受能力

7. 服务器端集群优化-集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

  • 集群完整性问题
  • 集群带宽问题
  • 数据倾斜问题
  • 客户端性能问题
  • 命令的集群兼容性问题
  • lua 和事务问题

问题1:在 Redis 的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

大家可以设想一下,如果有几个 slot 不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成 no,即有 slot 不能使用时,我们的 redis 集群还是可以对外提供服务。

image-20221217155919223


问题2:集群带宽问题

集群节点之间会不断的互相 ping 来确定集群中其它节点的状态。每次 ping 携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10 个节点的相关信息可能达到 1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被 ping 信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题。

解决途径:

  • 避免大集群,集群节点数不要太多,最好少于 1000,如果业务庞大,则建立多个集群。
  • 避免在单个物理机中运行太多 Redis 实例。
  • 配置合适的 cluster-node-timeout 值。

问题3:命令的集群兼容性问题

有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis 要求我们的 key 必须落在相同的 slot 上,然后大量的 key 同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。


问题4:lua 和事务的问题

lua 和事务都是要保证原子性问题,如果你的 key 不在一个节点,那么是无法保证 lua 的执行和事务的特性的,所以在集群模式是没有办法执行 lua 和事务的。


那我们到底是集群还是主从

单体 Redis(主从 Redis)已经能达到万级别的 QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建 Redis 集群。
群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成 no,即有 slot 不能使用时,我们的 redis 集群还是可以对外提供服务。

原文地址:https://blog.csdn.net/weixin_53407527/article/details/128385620

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


文章浏览阅读752次。关系型数据库关系型数据库是一个结构化的数据库,创建在关系模型(二维表模型)基础上,一般面向于记录SQL语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作主流的关系数据库包括Oracle、Mysql、SQL Server、Microsoft Access、DB2等非关系型数据库NoSQL(nOSQL=Not Only SQL),意思是“不仅仅是SQL”,是非关系型数据库的总称。除了主流的关系型数据库外的数据库,都认为是非关系型主流的NoSQ.._redis是非关系型数据库吗
文章浏览阅读687次,点赞2次,收藏5次。商城系统中,抢购和秒杀是很常见的营销场景,在一定时间内有大量的用户访问商场下单,主要需要解决的问题有两个:1. 高并发对数据库产生的压力;2. 竞争状态下如何解决商品库存超卖;高并发对数据库产生的压力对于第一个问题,使用缓存来处理,避免直接操作数据库,例如使用 Redis。竞争状态下如何解决商品库存超卖对于第二个问题,需要重点说明。常规写法:查询出对应商品的库存,判断库存数量否大于 0,然后执行生成订单等操作,但是在判断库存是否大于 0 处,如果在高并发下就会有问题,导致库存_php库存结余并发
文章浏览阅读1.4k次。MongoTemplate开发spring-data-mongodb提供了MongoTemplate和MongoRepository两种方式访问MongoDB,MongoRepository的方式访问较为简单,MongoTemplate方式较为灵活,这两种方式在Java对于MongoDB的运用中相辅相成。_springboot插入指定的mongodb数据库
文章浏览阅读887次,点赞10次,收藏19次。1.背景介绍1. 背景介绍NoSQL数据库是一种非关系型数据库,它的特点是可以存储非结构化的数据,并且可以处理大量的数据。HBase是一个分布式、可扩展的列式存储系统,它是基于Google的Bigtable设计的。HBase是一个开源的NoSQL数据库,它的核心功能是提供高性能的随机读写访问。在本文中,我们将对比HBase与其他NoSQL数据库,例如Redis、MongoDB、Cass...
文章浏览阅读819次。MongoDB连接失败记录_edentialmechanisn-scram-sha-1
文章浏览阅读470次。mongodb抽取数据到ES,使用ELK内部插件无法获取数据,只能试试monstache抽取mongodb数据,但是monstache需要mongodb replica set 模式才能采集数据。############monstache-compose文件。#replicas set 启动服务。# 默认备份节点不能读写,可以设置。# mydb指的是需要同步的数据库。#登录主mongodb初始化rs。#primary 创建用户。# ip地址注意要修改。# ip地址注意要修改。_monstache csdn
文章浏览阅读913次,点赞4次,收藏5次。storage:fork: trueadmin登录切换数据库注意: use 代表创建并使用,当库中没有数据时默认不显示这个库删除数据库查看表清单> show tables # 或者 > show collections表创建db.createCollection('集合名称', [options])table1字段类型描述capped布尔(可选)如果为 true,则创建固定集合。固定集合是指有着固定大小的集合,当达到最大值时,它会自动覆盖最早的文档。_mongodb5
文章浏览阅读862次。Centos7.9设置MongoDB开机自启(超全教程,一条龙)_mongodb centos开机启动脚本
文章浏览阅读1.3k次,点赞6次,收藏21次。NoSQL数据库使用场景以及架构介绍
文章浏览阅读856次,点赞21次,收藏20次。1.背景介绍1. 背景介绍NoSQL数据库是一种非关系型数据库,它的设计目标是为了解决传统关系型数据库(如MySQL、Oracle等)在处理大量不结构化数据方面的不足。NoSQL数据库可以处理大量数据,具有高性能、高可扩展性和高可用性。但是,与关系型数据库不同,NoSQL数据库没有固定的模式,数据结构也不一定是表格。在NoSQL数据库中,数据存储和查询都是基于键值对、列族、图形等不同的...
文章浏览阅读416次。NoSQL定义:非关系型、分布式、开放源码和具有横向扩展能力的下一代数据库。由c++编写的开源、高性能、无模式的基于分布式文件存储的文档型数据库特点:高性能、高可用性、高扩展性、丰富的查询支持、可替换已完场文档某个指定的数据字段应用场景:社交场景:使用mongodb存储用户信息游戏场景:用户信息,装备积分物流场景:订单信息,订单状态场景操作特点:数据量大;读写操作频繁;价值较低的数据,对事物性要求不高开源、c语言编写、默认端口号6379、key-value形式存在,存储非结构化数据。_nosql
文章浏览阅读1.5k次,点赞3次,收藏2次。Exception in thread "main" redis.clients.jedis.exceptions.JedisConnectionException: Failed to create socket. at redis.clients.jedis.DefaultJedisSocketFactory.createSocket(DefaultJedisSocketFactory.java:110) at redis.clients.jedis.Connection.connect(Conne_redis.clients.jedis.exceptions.jedisconnectionexception: failed to create so
文章浏览阅读6.5k次,点赞3次,收藏12次。readAnyDatabase(在所有数据库上都有读取数据的权限)、readWriteAnyDatabase(在所有数据库上都有读写数据的权限)、userAdminAnyDatabase(在所有数据库上都有管理user的权限)、dbAdminAnyDatabase(管理所有数据库的权限);:clusterAdmin(管理机器的最高权限)、clusterManager(管理和监控集群的权限)、clusterMonitor(监控集群的权限)、hostManager( 管理Server);_mongodb创建用户密码并授权
文章浏览阅读593次。Redis是一个基于内存的键值型NoSQL数据库,在实际生产中有着非常广泛的用处_搭建本地redis
文章浏览阅读919次。Key 的最佳实践[业务名]:[数据名]:[id]足够简短:不超过 44 字节不包含特殊字符Value 的最佳实践:合理的拆分数据,拒绝 BigKey选择合适数据结构Hash 结构的 entry 数量不要超过 1000(默认是 500,如果达到上限则底层会使用哈希表而不是 ZipList,内存占用较多)设置合理的超时时间批量处理的方案:原生的 M 操作Pipeline 批处理注意事项:批处理时不建议一次携带太多命令。Pipeline 的多个命令之间不具备原子性。_redis高级实战
文章浏览阅读1.2k次。MongoDB 递归查询_mongodb数据库 递归
文章浏览阅读1.2k次。通过实际代码例子介绍:如何通过MongoTemplate和MongoRepository操作数据库数据_springboot操作mongodb
文章浏览阅读687次,点赞7次,收藏2次。首先欢迎大家阅读此文档,本文档主要分为三个模块分别是:Redis的介绍及安装、RedisDesktopManager可视化工具的安装、主从(哨兵)模式的配置。_redis 主从配置工具
文章浏览阅读764次。天下武功,无坚不摧,唯快不破!我的名字叫 Redis,全称是 Remote Dictionary Server。有人说,组 CP,除了要了解她外,还要给机会让她了解你。那么,作为开发工程师的你,是否愿意认真阅读此心法抓住机会来了解我,运用到你的系统中提升性能。我遵守 BSD 协议,由意大利人 Salvatore Sanfilippo 使用 C 语言编写的一个基于内存实现的键值型非关系(NoSQL)..._redis 7.2 源码
文章浏览阅读2k次。MongoDB 的增删改查【1】_mongodb $inc