编译器开发: 利用图的拓扑排序算法,计算源代码文件之间的依赖关系

我们平常所使用的主流编译器,都具有多源代码文件支持.例如把一些类定义在相应的文件中,要使用到这些类时,需要包含定义这个类的文件(如C++),或引用类所在的名字空间(如JAVA),或将这个文件作为单元引用(如Object Pascal)
当我们自己要实现一个支持多源代码文件的编译器时,需要在编译某个源代码文件之前,先编译这个源代码所引用到的文件.例如有一个源文件 a.src,里面定义了一个类,内容如下:
class List
{
public void Add(Object obj)
{
...
}
}
然后有一个源文件b.src,里面用到了List类,内容如下:
using "a.src"

class Test
{
public static main(String argv[])
{
List objs = new List;
List.Add(10,20); //有语法错误
}
}
在编译b.src时,如果a.src文件未被预先编译,编译器将无法识别List类,也无法判断List类是否具有成员函数Add,以及对Add的调用参数列表是否正确等.这时就需要先分析b.src引用了哪些文件,这些文件又引用到了其它哪些文件,并优先编译处于引用列表顶端的文件,并以此类推.
例如存在下面几个源代码文件A,B,C,D,E. 引用关系如下:
A引用: B,C
B引用: D,E
C引用: B,E
D引用: E
E没引用其它文件,这里需要的编译顺序应该如下:
E D B C A

另外,在文件引用关系中不能出现互相引用,这样会导至无法编译.

在了解了为什么要计算源代码依赖关系后,就可以开始实现具体的算法了,可以把这一步放在词法分析之后,语法分析之前来做. 因为词法分析之后,可以很容易的分析出一个源文件引用了哪些其它源文件,如果把这一步放在预处理中专门来做的话,同样需要做去注释,拆词等工作,产生了不必要的重复.
计算源代码依赖关系的算法比较简单,可以先把所有源代码文件看成一个个的顶点,一个顶点(源代码文件)如果引用了另一个顶点,就增加一条从当前顶点到被引用顶点的出边,当增加完所有顶点的出边后,正常情况下这些顶点就形成了一个有向无环图如下图:(如果出现了环,说明源代码文件中产生了错误的循环引用)


此时采用图的无后继顶点优先拓扑排序方法即可,无后继是指出度为0(即没有出边),即每次删除图中出度为0的顶点和顶点的入边,一直删到没有出度为0的顶点为止,如果删除的顶点数小于图中所有的顶点数,则此图有环,并报错.算法描述如下:
//G为图
void FirstTopSort(G)
{
while(G中有出度为0的顶点)
{
从G中找一个出度为0的顶点v且输出v;
从G中删去v及v的所有入边
}
if(输出的顶点数目 < G的顶点数)
printf("源代码文件存在循环引用!");
}
示意图如下:
先删除第一个出度为0的顶点E和E的入边,并记录E

此时D出边为0,删除D和D的入边,并记录D

再删除和记录B
再删除和记录C,最后是A记录的顺序即是结果 E D B C A

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结