The Direct3D Transformation Pipeline

Introduction

This white paper provides a technical explanation for Direct3D application developers on how to set the parameters of the Direct3D Transformation Pipeline by the direct manipulation of Direct3D matrices.

Overview

Direct3D uses three transformations to change your 3D model coordinates into pixel coordinates (screen space). These transformations are world transform,view transform,and projection transform.

World transform controls how model coordinates are transformed into world coordinates. World transform can include translations,rotations,and scalings,but it does not apply to lights. For more information on working with world transforms,see World Transform.

View transform controls the transition from world coordinates into "camera space," determining camera position in the world. For an example of working with view transforms,see View Transform.

Projection transform changes the geometry from camera space into "clip space" and applies perspective distortion. The term "clip space" refers to how the geometry is clipped to the view volume during this transform. For an example of working with projection transforms,see Projection Transform.

Finally,the geometry in clip space is transformed into pixel coordinates (screen space). This transformation is controlled by the viewport settings.

Clipping and transforming vertices must take place in homogenous space (simply put,space in which the coordinate system includes a fourth element),but the final result for most applications needs to be non-homogenous three-dimensional (3D) coordinates defined in "screen space." This means that both the input vertices and the clipping volume must be translated into homogenous space to perform the clipping and then translated back into non-homogenous space to be displayed.

The three Direct3D transformations-world,view,and projection transform-are defined by Direct3D matrices. A Direct3D matrix is a 4x4 homogenous matrix defined by a D3DMATRIX structure. Although Direct3D matrices are not standard objects-they are not represented by a COM interface-you can create and set them just as you would any other Direct3D object. For more information on Direct3D matrices,see Transforms.

The Transformation Pipeline

If a vertex in the model coordinate is given by Pm = (Xm,Ym,Zm,1),then the transformations shown in the following figure are applied to compute screen coordinates Ps = (Xs,Ys,Zs,Ws).

The seven stages are as follows:

  1. World matrix Mworld transforms vertices from the model space to the world space. This matrix is set by:

    d3dDevice->SetTransform (D3DTRANSFORMSTATE_WORLD,matrix address)

    Direct3D implementation assumes that the last column of this matrix is (0,1). No error is returned if the user specifies a matrix with a different last column,but the lighting and fog will be incorrect.

  2. View matrix Mview transforms vertices from the world space to the camera space. This matrix is set by:

    d3dDevice->SetTransform (D3DTRANSFORMSTATE_VIEW,1). No error is returned if the user specifies a matrix with different last column,but the lighting and fog will be incorrect.

  3. Projection matrix Mproj transforms vertices from the camera space to the projection space. This matrix is set by:

    d3dDevice->SetTransform (D3DTRANSFORMSTATE_PROJECTION,matrix address)

    The last column of the projection matrix should be (0,1,0),or (0,a,0) for correct fog and lighting effects; (0,0) form is preferred.

    Clipping volume for all points Xp = (Xp,Yp,Zp,Wp) in the projection space is defined as:

    -Wp < Xp <= Wp

    -Wp < Yp <= Wp

    0 < Zp <= Wp

    All points that do not satisfy these equations will be clipped.

    If a view volume is defined as:

    Sw-screen window width in camera space in near clipping plane

    Sh-screen window height in camera space in near clipping plane

    Zn-distance to the near clipping plane along Z axes in camera space

    Zf-distance to the far clipping plane along Z axes in camera space

    then a perspective projection matrix could be written as follows:

    where Mij are members of Mproj.

    For the orthogonal projection we have:

    Direct3D assumes that the perspective projection matrix has the form:

    If the perspective projection matrix does not have this form,there will be some artifacts. For example,table fog will not work.

  4. Direct3D allows the user to change the clip volume as follows:

    This can be rewritten as:

    where:

    Cx,Cy - dvClipX,dvClipY from D3DVIEWPORT9

    Cw,Ch - dvClipWidth,dvClipHeight from D3DVIEWPORT9

    Zmin,Zmax - dvMinZ,dvMaxZ from D3DVIEWPORT9

    This transformation can provide increased precision and is equivalent to scaling and shifting the clipping volume.

    The corresponding Mclip matrix is:

    A vertex is transformed by:

    (Xc,Yc,Zc,Wc) = (Xp,Wp) * Mclip

    If you do not want to scale the clip volume,you can set viewport parameters to default values:

    dvClipWidth = 2

    dvClipHeight = 2

    dvClipX = -1

    dvClipY = 1

    dvMinZ = 0

    dvMaxZ = 1

  5. The clipping stage is optional if the user specifies the D3DDP_DONOTCLIP flag in a DrawPrimitive call. In this case,all matrices (including Mvs) can be combined.

  6. The viewport scale matrix Mvs scales coordinates to be within the viewport window and flips the Y axis from up to down:

    where:

    dwX,dwY - viewport offsets in pixels from D3DVIEWPORT9

    dwWidth,dwHeight - viewport width and height in pixels from D3DVIEWPORT9

  7. Finally,screen coordinates are computed and passed to the rasterizer:

Usage Tips

  1. The last column of the world and view matrices should be (0,or the lighting will be incorrect.

  2. Set the viewport parameters to build an identity Mclip matrix,unless you understand exactly what it is needed for.

    dvClipWidth = 2

    dvClipHeight = 2

    dvClipX = -1

    dvClipY = 1

    dvMinZ = 0

    dvMaxZ = 1

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结