OpenGL—渲染管线

简介:

渲染就是将3D世界中的物体显示到2D平面中的一个过程。学习OpenGL渲染的机制就是学习如图所示的几个关键部分。


在OpenGL ES 1.0 版本中,只支持固定管线,而在OpenGL ES 2.0后支持可编程管线,即在渲染的过程中不再是对开发人员透明的,可以通过一定的操作来实现更为复杂的功能。如图灰色部分(Vertex Shader和Fragment Shader)即为可编程部分,通过编写glsl脚本语言来控制OpenGL的渲染过程。

Vertex Arrys/Buffer Objects

即用户输入数据,如绘制三角形等输入的顶点信息。

VertexShader

可编程脚本(GLSL),用户可以通过编写shader脚本来控制GPU的运行,从而具有很强的灵活性。
OpenGL程序通过输入需要绘制图形的顶点信息,对于每个输入的顶点都会进入这个顶点着色器,所以通过顶点着色器将控制每个顶点的信息。由于顶点着色器是每个顶点相对独立运行的,所以无法在顶点着色器中访问关联的顶点等信息。
在顶点着色器中主要完成的工作就是将最终要显示的顶点通过模型视图投影矩阵变换,输出到gl_Position内置变量中,也就是说最后gl_Position保存的顶点是裁剪坐标(Clip Coordinates),之后只需要将顶点坐标进行裁剪和视口转换即最终用户空间看到的坐标。

Primitive Assembly

图元装配,即将需要绘制的图形组装成最后的形状。由于在前个阶段都是以顶点的形式存在的,所以这个阶段即根据需要绘制的图形,组装成图形的轮廓。接着将为这个轮廓填色

Rasterization

光栅化阶段,也就是将上面图元装配好的轮廓进行填色,根据用户设置的着色器模型来处理(glShadeModel)。如果设置为GL_SMOOTH,则将会进行插值计算,是的看起来是一个过渡的过程。如果设置为GL_FLAT,则除了顶点外,其他都是用设置的颜色进行填充。

TextureMemory

纹理数据,用于对图形进行纹理贴图。首先需要将外部图片的信息加载(glTexImage2d等函数)到OpenGL的纹理缓冲区中(这部分的操作是CPU完成的),接着通过opengl程序设置问题的UV坐标,即可以理解为纹理的贴图顶点坐标(与图形坐标一起输入在顶点着色器中)。

FragmentShader

即片断着色器或称为像素着色器更为适合。这部分也是用户可以通过编写glsl的着色器脚本,来控制最后需要显示的颜色。 片断着色器处理的是每个像素的着色过程,也就是说每个像素为其填色的时候,将会进入到此阶段,完成着色。在片断着色器中最重要的变量为gl_FragColor,即最后显示的颜色,通过为每个像素赋值。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结