自己对依赖、关联、聚合和组合之间区别的理解

在学习面向对象设计对象关系时,依赖、关联、聚合和组合这四种关系之间区别比较容易混淆。特别是后三种,仅仅是在语义上有所区别,所谓语义就是指上下文环境、特定情景等。他们在编程语言中的体现却是基本相同的,但是基本相同并不等于完全相同,这一点在我的前一篇博文 《设计模式中类的关系》中已经有所提及,下面就来详细的论述一下在java中如何准确的体现依赖、关联、聚合和组合。

首先看一看书上对这四种关系的定义:

  • 依赖(Dependency)关系是类与类之间的联接。依赖关系表示一个类依赖于另一个类的定义。例如,一个人(Person)可以买车(car)和房子(House),Person类依赖于Car类和House类的定义,因为Person类引用了Car和House。与关联不同的是,Person类里并没有Car和House类型的属性,Car和House的实例是以参量的方式传入到buy()方法中去的。一般而言,依赖关系在Java语言中体现为局域变量、方法的形参,或者对静态方法的调用。
  • 关联(Association)关系是类与类之间的联接,它使一个类知道另一个类的属性和方法。关联可以是双向的,也可以是单向的。在Java语言中,关联关系一般使用成员变量来实现。
  • 聚合(Aggregation) 关系是关联关系的一种,是强的关联关系。聚合是整体和个体之间的关系。例如,汽车类与引擎类、轮胎类,以及其它的零件类之间的关系便整体和个体的关系。与关联关系一样,聚合关系也是通过实例变量实现的。但是关联关系所涉及的两个类是处在同一层次上的,而在聚合关系中,两个类是处在不平等层次上的,一个代表整体,另一个代表部分。
  • 组合(Composition) 关系是关联关系的一种,是比聚合关系强的关系。它要求普通的聚合关系中代表整体的对象负责代表部分对象的生命周期,组合关系是不能共享的。代表整体的对象需要负责保持部分对象和存活,在一些情况下将负责代表部分的对象湮灭掉。代表整体的对象可以将代表部分的对象传递给另一个对象,由后者负责此对象的生命周期。换言之,代表部分的对象在每一个时刻只能与一个对象发生组合关系,由后者排他地负责生命周期。部分和整体的生命周期一样。

——摘自《Java面向对象编程》,作者:孙卫琴

以上关系的耦合度依次增强(关于耦合度的概念将在以后具体讨论,这里可以暂时理解为当一个类发生变更时,对其他类造成的影响程度,影响越小则耦合度越弱,影响越大耦合度越强)。由定义我们已经知道,依赖关系实际上是一种比较弱的关联,聚合是一种比较强的关联,而组合则是一种更强的关联,所以笼统的来区分的话,实际上这四种关系、都是关联关系。

依赖关系比较好区分,它是耦合度最弱的一种,在java中表现为局域变量、方法的形参,或者对静态方法的调用,如下面的例子:Driver类依赖于Car类,Driver的三个方法分别演示了依赖关系的三种不同形式。

  1. classCar{
  2. publicstaticvoidrun(){
  3. System.out.println("汽车在奔跑");
  4. }
  5. }
  6. classDriver{
  7. //使用形参方式发生依赖关系
  8. publicvoiddrive1(Carcar){
  9. car.run();
  10. }
  11. //使用局部变量发生依赖关系
  12. publicvoiddrive2(){
  13. Carcar=newCar();
  14. car.run();
  15. }
  16. //使用静态变量发生依赖关系
  17. publicvoiddrive3(){
  18. Car.run();
  19. }
  20. }

关联关系在java中一般使用成员变量来实现,有时也用方法形参的形式实现。依然使用Driver和Car的例子,使用方法参数形式可以表示依赖关系,也可以表示关联关系,毕竟我们无法在程序中太准确的表达语义。在本例中,使用成员变量表达这个意思:车是我自己的车,我“拥有”这个车。使用方法参数表达:车不是我的,我只是个司机,别人给我什么车我就开什么车,我使用这个车。

  1. classDriver{
  2. //使用成员变量形式实现关联
  3. Carmycar;
  4. publicvoiddrive(){
  5. mycar.run();
  6. }
  7. ...
  8. //使用方法参数形式实现关联
  9. publicvoiddrive(Carcar){
  10. car.run();
  11. }
  12. }

聚合关系是是一种比较强的关联关系,java中一般使用成员变量形式实现。对象之间存在着整体与部分的关系。例如上例中

  1. classDriver{
  2. //使用成员变量形式实现聚合关系
  3. Carmycar;
  4. publicvoiddrive(){
  5. mycar.run();
  6. }
  7. }


假如给上面代码赋予如下语义:车是一辆私家车,是司机财产的一部分。则相同的代码即表示聚合关系了。聚合关系一般使用setter方法给成员变量赋值。

假如赋予如下语义:车是司机的必须有的财产,要想成为一个司机必须要先有辆车,车要是没了,司机也不想活了。而且司机要是不干司机了,这个车就砸了,别人谁也别想用。那就表示组合关系了。一般来说,为了表示组合关系,常常会使用构造方法来达到初始化的目的,例如上例中,加上一个以Car为参数的构造方法

  1. publicDriver(Carcar){
  2. mycar=car;
  3. }

所以,关联、聚合、组合只能配合语义,结合上下文才能够判断出来,而只给出一段代码让我们判断是关联,聚合,还是组合关系,则是无法判断的。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结