第五章 会修电脑不会修收音机?---依赖倒转原则设计模式六大原则3:依赖倒置原则

1.依赖倒转原则:抽象不应该依赖细节,细节应该依赖于抽象。就是要针对接口来编程,不要对实现编程。组装机过程中,CPU,内存,硬盘都是在针对接口设计的,如果针对实现来设计,那就会出现换内存需要把主板也换了的尴尬。

2.高层模块不应该依赖底层模块。两个都应该依赖抽象。

3.里氏代换原则:子类型必须能够替换掉他们的父类型。子类继承了父类,那么子类可以以父类的形式出现。

4.在编程世界里,企鹅不能以父类--鸟的身份出现,因为前提说所有鸟都能飞,而企鹅飞不了,所以企鹅不能继承鸟类。如果企鹅继承了鸟,那么企鹅就会飞。

5.只有当子类可以替换掉父类,软件单位的功能不受到影响时,父类才能真正被复用,而子类也能够在父类的基础上增加新的行为。

6.高层模块不应该依赖于底层模块,两个都应该依赖抽象。

7.依赖倒转其实就是谁也不要依靠谁,除了约定的接口,大家都可以灵活自如。

8.收音机跟电脑相比就是耦合过度,只要收音机出故障,不管是没有声音,不能调频,还是有杂音,反正都很难修理,不懂得人根本修不来。

9.依赖倒转其实可以说是面向对象设计的标志,用哪种语言来编写程序不重要,如果编写时考虑的都是如何针对抽象编程而不是针对细节编程,即程序中所有的依赖关系都是终止于抽象类或者借口,那就是面向对象的设计,反之就是过程化的设计了。


依赖倒转原则即 依赖倒置原则 。

依赖倒置原则

A.高层次的模块不应该依赖于低层次的模块,他们都应该依赖于抽象。

B.抽象不应该依赖于具体,具体应该依赖于抽象。

所谓依赖倒置原则(Dependence Inversion Principle)就是要依赖于抽象,不要依赖于具体。简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模块间的耦合。

面向过程的开发,上层调用下层,上层依赖于下层,当下层剧烈变动时上层也要跟着变动,这就会导致模块的复用性降低而且大大提高了开发的成本。
面向对象的开发很好的解决了这个问题,一般情况下抽象的变化概率很小,让 用户程序依赖于抽象,实现的细节也依赖于抽象。即使实现细节不断变动,只要抽象不变,客户程序就不需要变化。这大大降低了客户程序与实现细节的 耦合度

背景1:公司是福特和本田公司的金牌合作伙伴,现要求开发一套自动驾驶系统,只要汽车上安装该系统就可以实现无人驾驶,该系统可以在福特和本田车上使用,只要这两个品牌的汽车使用该系统就能实现自动驾驶。于是有人做出了分析如图一。

对于图一分析:我们定义了一个AutoSystem类,一个FordCar类,一个HondaCar类。FordCar类和HondaCar类中各有三个方法:Run(启动Car)、Turn(转弯Car)、Stop(停止Car),当然了一个汽车肯定不止这些功能,这里只要能说明问题即可。AutoSystem类是一个自动驾驶系统,自动操纵这两辆车。

背景2:公司的业务做大了,同时成为了通用、三菱、大众的金牌合作伙伴,于是公司要求该自动驾驶系统也能够安装在这3种公司生产的汽车上。于是我们不得不变动AutoSystem:

现在AutoSystem系统依赖于ICar 这个抽象,而与具体的实现细节HondaCar、FordCar、BmwCar无关,所以实现细节的变化不会影响AutoSystem。对于实现细节只要实现ICar 即可,即实现细节依赖于ICar 抽象。
综上:
一个应用中的重要策略决定及业务模型正是在这些高层的模块中。也正是这些模型包含着应用的特性。但是,当这些模块依赖于低层模块时,低层模块的修改将会直接影响到它们,迫使它们也去改变。这种境况是荒谬的。应该是处于高
层的模块去迫使那些低层的模块发生改变。应该是处于高层的模块优先于低层的模块。无论如何高层的模块也不应依赖于低层的模块。而且,我们想能够复用的是高层的模块。通过 子程序库的形式,我们已经可以很好地复用低层的模块了。当高层的模块依赖于低层的模块时,这些高层模块就很难在不同的环境中复用。但是,当那些高层 模块独立于低层模块时,它们就能很简单地被复用了。这正是位于框架设计的最核心之处的原则。
总结:依赖倒置原则
A.高层次的模块不应该依赖于低层次的模块,他们都应该依赖于抽象。
B.抽象不应该依赖于具体,具体应该依赖于抽象。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结