GCD实现单一资源的多读单写

在多线程编程中,最常见的场景是如何保证线程安全,比如你可能经常遇到多线程访问某个dic(又或者是array或其他)造成的crash。
这篇文章里,我们讨论下如何使用GCD实现多线程读者与写者问题,也即单一资源的线程安全问题。
同时会有一些在MRC下crash问题讨论。

解决方案与原理

ARC版本

_ioQueue = dispatch_queue_create("ioQueue",DISPATCH_QUEUE_CONCURRENT);
- (void)setSafeObject:(id)object forKey:(NSString *)key
{
    key = [key copy];
    dispatch_barrier_async(self.ioQueue,^{
        if (key && object) {
            [_dic setObject:object forKey:key];
        }
    });
}
- (id)getSafeObjectForKey:(NSString *)key
{
    __block id result = nil;
    dispatch_sync(self.ioQueue,^{
        result = [_dic objectForKey:key];
    });
    return result;
}
  • 首先,我们需要创建一个私有的并行队列来处理读写操作。
    在这里不应该使用globe_queue,因为我们通过dispatch_barrier_async来保证写操作的互斥,我们不希望写操作阻塞住globe_queue中的其他不相关任务,我们只希望在写的同时,不会有其他的写操作或者读操作。
    同时,也不推荐给队列设置优先级,多数情况下使用default就可以了。而改变优先级往往会造成一些无法预料的问题,比如优先级反转(具体的可以参看参考文献)。

  • dispatch_barrier_async的block运行时机是,在它之前所有的任务执行完毕,并且在它后面的任务开始之前,期间不会有其他的任务执行。注意在barrier执行的时候,队列本质上如同一个串行队列,其执行完以后才会恢复到并行队列。

  • 另外一个值得注意的问题是,在写操作的时候,我们使用dispatch_async,而在读操作的时候我们使用dispatch_sync。很明显,这2个操作一个是异步的,一个是同步的。我们不需要使每次程序执行的时候都等待写操作完成,所以写操作异步执行,但是我们需要同步的执行读操作来保证程序能够立刻得到它想要的值。

  • 使用sync的时候需要极其的小心,因为稍不注意,就有可能产生死锁,这可能造成灾难性的后果。你肯定也注意到了在写操作的时候对key进行了copy,关于此处的解释,插入一段来自参考文献的引用:

    函数调用者可以自由传递一个NSMutableString的key,并且能够在函数返回后修改它。因此我们必须对传入的字符串使用copy操作以确保函数能够正确地工作。如果传入的字符串不是可变的(也就是正常的NSString类型),调用copy基本上是个空操作。



到这里整个基本示例代码已经完成,一般情况下能够满足我们的需要。下面来看看在MRC过程中我遇到的一些问题。

关于死锁

dispatch_queue_t queueA; // 串行队列
dispatch_sync(queueA,^(){    
    dispatch_sync(queueA,^(){        
        foo();    
    });
});

造成死锁比较常见的情况可以简化成上面这段代码。

dispatch_sync会同步的提交工作并在返回前等待其完成。第一dispatch_sync正在运行并等待它的block完成,但是block不能够完成,它调用了第二个dispatch_sync,而第二个dispatch_sync会等待串行队列中已经存在的第一个任务完成,很明显这个任务无法完成,造成死锁。

值得注意的是main_queue就是一个串行队列。

MRC下容易遇到的问题与解决方案

- (void)setSafeObject:(id)object forKey:(NSString *)key
{
    key = [key copy];
    dispatch_barrier_async(self.ioQueue,^{
        if (key && object) {
            [_dic setObject:object forKey:key];
        }
    });
    [key release];
}
- (id)getSafeObjectForKey:(NSString *)key
{
    __block id result = nil;
    dispatch_sync(self.ioQueue,^{
        result = [_dic objectForKey:key];
    });
    return result;
}

首先我们看看上面这段代码,基本就是ARC版本转换过来的,看起来没问题。那么究竟是不是真的没问题,我们跑段代码试试看:

//版本一
- (void)test
{
    for (int i = 0; i < 1000000; i++) {             
        dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0),^{
            [self setSafeObject:[NSString stringWithFormat:@"86+131633829%i",i] forKey:KEY];
        });
        NSString *result = [self getSafeObjectForKey:KEY];
        NSLog(@"get string: %@,length : %lu",result,result.length);
    }
}

test执行后,很快就会发生crash,读操作的result会发生野指针。

如果你有经验的话,可能会发现问题:
如果某个线程a刚取出了result值,这次线程b开始执行写操作,造成线程a中的result值成为了一份过期的数据,如果正好线程b的runloop结束,很有可能旧的result内存地址被释放掉,这时线程a中的result就会发生野指针crash。

这时候,你可能会采取这样子的修改,代码如下:

//版本二
- (void)test
{
    for (int i = 0; i < 1000000; i++) {             
        dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,i] forKey:KEY];
        });
        NSString *result = [[self getSafeObjectForKey:KEY] retain];
        NSLog(@"get string: %@,result.length);
        [result release];
    }
}

运行之后会发现,仍然会crash,其实问题和上面一样,我们的改动没有真正的解决问题。最好的解决方案是在读操作之前就已经retain住了,看看最终版的代码吧:

//最终版
- (id)getSafeObjectForKey:(NSString *)key
{
    __block id result = nil;
    dispatch_sync(self.ioQueue,^{
        result = [[_dic objectForKey:key] retain];
    });
    return [result autorelease];
}
注意retain过一定要释放掉,不然或造成内存泄露。

再次验证后发现,程序不会crash了。

转载请注明出处哦,我的博客: luoyibu


GCD是一套很好用的多线程库,更多的用法请看参考资料

参考资料

  1. 底层并发 API
  2. 并发编程:API 及挑战
  3. GCD 深入理解:第一部分
  4. GCD 深入理解:第二部分

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结