设计模式六大原则 - 依赖倒置原则

类A直接依赖于类B,假如要将类A修改为依赖类C,则必须通过修改类A的代码来达成。这种场景下,类A一般是高层模块,负责复杂的业务逻辑。类B和C是底层模块,负责基本的原子操作。假如修改类A,将会给程序带来不必要的风险。而遵循依赖倒置原则的程序设计可以解决这一问题。

原文链接:http://tianweili.github.io/blog/2015/02/07/dependence-inversion-principle/

什么是依赖倒置原则

英文缩写DIP(Dependence Inversion Principle)。

原始定义:

High level modules should not depend upon low level modules. Both should depend upon abstractions. Abstractions should not depend upon details. Details should depend upon abstractions.

翻译过来就三层含义:

  • 高层模块不应该依赖低层模块,两者都应该依赖其抽象;
  • 抽象不应该依赖细节;
  • 细节应该依赖抽象。

抽象:即抽象类或接口,两者是不能够实例化的。

细节:即具体的实现类,实现接口或者继承抽象类所产生的类,两者可以通过关键字new直接被实例化。

现在我们来通过实例还原开篇问题的场景,以便更好的来理解。下面代码描述了一个简单的场景,Jim作为人有吃的方法,苹果有取得自己名字的方法,然后实现Jim去吃苹果。

代码如下:

     
     
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
     
     
//具体Jim人类
public class Jim {
public void eat(Apple apple){
System.out.println( "Jim eat " + apple.getName());
}
}
//具体苹果类
public class Apple {
public String getName(){
return "apple";
}
}
public class Client {
public static void main(String[] args) {
Jim jim = new Jim();
Apple apple = new Apple();
jim.eat(apple);
}
}

运行结果:Jim eat apple

上面代码看起来比较简单,但其实是一个非常脆弱的设计。现在Jim可以吃苹果了,但是不能只吃苹果而不吃别的水果啊,这样下去肯定会造成营养失衡。现在想让Jim吃香蕉了(好像香蕉里含钾元素比较多,吃点比较有益),突然发现Jim是吃不了香蕉的,那怎么办呢?看来只有修改代码了啊,由于上面代码中Jim类依赖于Apple类,所以导致不得不去改动Jim类里面的代码。那如果下次Jim又要吃别的水果了呢?继续修改代码?这种处理方式显然是不可取的,频繁修改会带来很大的系统风险,改着改着可能就发现Jim不会吃水果了。

上面的代码之所以会出现上述难堪的问题,就是因为Jim类依赖于Apple类,两者是紧耦合的关系,其导致的结果就是系统的可维护性大大降低。要增加香蕉类却要去修改Jim类代码,这是不可忍受的,你改你的代码为什么要动我的啊,显然Jim不乐意了。我们常说要设计一个健壮稳定的系统,而这里只是增加了一个香蕉类,就要去修改Jim类,健壮和稳定还从何谈起。

而根据依赖倒置原则,我们可以对上述代码做些修改,提取抽象的部分。首先我们提取出两个接口:People和Fruit,都提供各自必需的抽象方法,这样以后无论是增加Jim人类,还是增加Apple、Banana等各种水果,都只需要增加自己的实现类就可以了。由于遵循依赖倒置原则,只依赖于抽象,而不依赖于细节,所以增加类无需修改其他类。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
     
     
//人接口
public interface People {
public void eat(Fruit fruit); //人都有吃的方法,不然都饿死了
}
//水果接口
public interface Fruit {
public String getName(); //水果都是有名字的
}
//具体Jim人类
public class Jim implements People{
public void eat(Fruit fruit){
System.out.println( "Jim eat " + fruit.getName());
}
}
//具体苹果类
public class Apple implements Fruit{
public String getName(){
return "apple";
}
}
//具体香蕉类
public class Banana implements Fruit{
public String getName(){
return "banana";
}
}
public class Client {
public static void main(String[] args) {
People jim = new Jim();
Fruit apple = new Apple();
Fruit Banana = new Banana(); //这里符合了里氏替换原则
jim.eat(apple);
jim.eat(Banana);
}
}

运行结果:

1
2
     
     
Jim eat apple
Jim eat banana
  • People类是复杂的业务逻辑,属于高层模块,而Fruit是原子模块,属于低层模块。People依赖于抽象的Fruit接口,这就做到了:高层模块不应该依赖低层模块,两者都应该依赖于抽象(抽象类或接口)。
  • People和Fruit接口与各自的实现类没有关系,增加实现类不会影响接口,这就做到了:抽象(抽象类或接口)不应该依赖于细节(具体实现类)。
  • Jim、Apple、Banana实现类都要去实现各自的接口所定义的抽象方法,所以是依赖于接口的。这就做到了:细节(具体实现类)应该依赖抽象。

什么是倒置

到了这里,我们对依赖倒置原则的“依赖”就很好理解了,但是什么是“倒置”呢。是这样子的,刚开始按照正常人的一般思维方式,我想吃香蕉就是吃香蕉,想吃苹果就吃苹果,编程也是这样,都是按照面向实现的思维方式来设计。而现在要倒置思维,提取公共的抽象,面向接口(抽象类)编程。不再依赖于具体实现了,而是依赖于接口或抽象类,这就是依赖的思维方式“倒置”了。

依赖的三种实现方式

对象的依赖关系有三种方式来传递:

接口方法中声明依赖对象。

就是我们上面代码所展示的那样。

构造方法传递依赖对象。

在构造函数中的需要传递的参数是抽象类或接口的方式实现。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
     
     
//具体Jim人类
public class Jim implements People{
private Fruit fruit;
public Jim(Fruit fruit){ //构造方法传递依赖对象
this.fruit = fruit;
}
public void eat(Fruit fruit){
System.out.println( "Jim eat " + this.fruit.getName());
}
}

Setter方法传递依赖对象。

在我们设置的setXXX方法中的参数为抽象类或接口,来实现传递依赖对象。代码如下:

//具体Jim人类
public class Jim implements People{
private Fruit fruit;
public void setFruit(Fruit fruit){ //setter方式传递依赖对象
this.fruit = fruit;
}
public void eat(){
System.out.println( "Jim eat " + this.fruit.getName());
}
}

优点

从上面的代码修改过程中,我们可以看到由于类之间松耦合的设计,面向接口编程依赖抽象而不依赖细节,所以在修改某个类的代码时,不会牵涉到其他类的修改,显著降低系统风险,提高系统健壮性。

还有一个优点是,在我们实际项目开发中,都是多人团队协作,每人负责某一模块。比如一个人负责开发People模块,一人负责开发Fruit模块,如果未采用依赖倒置原则,没有提取抽象,那么开发People模块的人必须等Fruit模块开发完成后自己才能开发,否则编译都无法通过,这就是单线程的开发。为了能够两人并行开发,设计时遵循依赖倒置原则,提取抽象,就可以大大提高开发进度。

总结

说到底,依赖倒置原则的核心就是面向接口编程的思想,尽量对每个实现类都提取抽象和公共接口形成接口或抽象类,依赖于抽象而不要依赖于具体实现。依赖倒置原则的本质其实就是通过抽象(抽象类或接口)使各个类或模块的实现彼此独立,不相互影响,实现模块间的松耦合。但是这个原则也是6个设计原则中最难以实现的了,如果没有实现这个原则,那么也就意味着开闭原则(对扩展开放,对修改关闭)也无法实现。


作者:李天炜

原文链接:http://tianweili.github.io/blog/2015/02/07/dependence-inversion-principle/

转载请注明作者及出处,谢谢。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结