DataSource From Collection
package com.house.flink.source;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.ArrayList;
/**
* 获取collection集合当作数据源
*/
public class StreamingFromCollection {
public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
ArrayList<Integer> data = new ArrayList<>();
data.add(15);
data.add(20);
data.add(22);
data.add(27);
data.add(17);
// 从集合中获取数据源
DataStreamSource<Integer> collectionData = env.fromCollection(data);
//通map对数据进行处理
DataStream<Integer> numberStream = collectionData.map(value ->value*5);
// DataStream<Integer> numberStream = collectionData.map(new MapFunction<Integer, Integer>() {
// @Override
// public Integer map(Integer integer) throws Exception {
// return 3+integer;
// }
// });
//打印处理结果
numberStream.print();
env.execute("StreamingFromCollection");
}
}
datasource from file
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional @R_238_4045@ion regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.house.flink.wordcount;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.readTextFile("/Users/haozhang/env/bigdata/**");
DataStream<Tuple2<String, Integer>> counts =
text.flatMap(new Tokenizer())
.keyBy(0).sum(1);
counts.print();
env.execute("Streaming WordCount");
}
// *************************************************************************
// USER FUNCTIONS
// *************************************************************************
/**
* Implements the string tokenizer that splits sentences into words as a
* user-defined FlatMapFunction. The function takes a line (String) and
* splits it into multiple pairs in the form of "(word,1)" ({@code Tuple2<String,
* Integer>}).
*/
public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
String[] tokens = value.toLowerCase().split("\\W+");
// emit the pairs
for (String token : tokens) {
if (token.length() > 0) {
out.collect(new Tuple2<>(token, 1));
}
}
}
}
}
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。