C++中vector容器使用详细说明

在c++中,vector是一个十分有用的容器,下面通过本文给大家介绍C++中vector容器使用详细说明,具体介绍如下所示

1. 在C++中的详细说明

vector是C++标准模板库中的部分内容,它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库。

vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vector是一个能够存放任意类型的动态数组,能够增加和压缩数据。

2. 使用vector,必须在你的头文件中包含下面的代码:

#include

vector属于std命名域的,因此需要通过命名限定,如下完成你的代码:

using std::vector;
  vector vInts;

或者连在一起,使用全名:

std::vector vInts;

建议使用全局的命名域方式:

using namespace std;

3. 初始化

vector // 创建一个空的vector。
vector c1(c2) // 复制一个vector
vector c(n) // 创建一个vector,含有n个数据,数据均已缺省构造产生
vector c(n,elem) // 创建一个含有n个elem拷贝的vector
vector c(beg,end) // 创建一个含有n个elem拷贝的vector

4. 析构函数

c.~vector () // 销毁所有数据,释放内存

5. 成员函数

c.assign(beg,end)c.assign(n,elem)
  将[beg; end)区间中的数据赋值给c。将n个elem的拷贝赋值给c。
c.at(idx)
  传回索引idx所指的数据,如果idx越界,抛出out_of_range。
c.back() // 传回最后一个数据,不检查这个数据是否存在。
c.begin() // 传回迭代器中的第一个数据地址。
c.capacity() // 返回容器中数据个数。
c.clear() // 移除容器中所有数据。
c.empty() // 判断容器是否为空。
c.end() // 指向迭代器中末端元素的下一个,指向一个不存在元素。
c.erase(pos) // 删除pos位置的数据,传回下一个数据的位置。
c.erase(beg,end) //删除[beg,end)区间的数据,传回下一个数据的位置。
c.front() // 传回第一个数据。
get_allocator // 使用构造函数返回一个拷贝。
c.insert(pos,elem) // 在pos位置插入一个elem拷贝,传回新数据位置。
c.insert(pos,n,elem) // 在pos位置插入n个elem数据。无返回值。
c.insert(pos,beg,end) // 在pos位置插入在[beg,end)区间的数据。无返回值。
c.max_size() // 返回容器中最大数据的数量。
c.pop_back() // 删除最后一个数据。
c.push_back(elem) // 在尾部加入一个数据。
c.rbegin() // 传回一个逆向队列的第一个数据。
c.rend() // 传回一个逆向队列的最后一个数据的下一个位置。
c.resize(num) // 重新指定队列的长度。
c.reserve() // 保留适当的容量。
c.size() // 返回容器中实际数据的个数。
c1.swap(c2)
swap(c1,c2) // 将c1和c2元素互换。同上操作。
operator[] // 返回容器中指定位置的一个引用。

6. 用法示例:

6.1. 创建一个vector

vector容器提供了多种创建方法,下面介绍几种常用的。

创建一个Widget类型的空的vector对象:

  vector vWidgets;  

创建一个包含500个Widget类型数据的vector:

  vector vWidgets(500); 

创建一个包含500个Widget类型数据的vector,并且都初始化为0:

  vector vWidgets(500,Widget(0));

创建一个Widget的拷贝:

  vector vWidgetsFromAnother(vWidgets);

  向vector添加一个数据

  vector添加数据的缺省方法是push_back()。

push_back()函数表示将数据添加到vector的尾部,并按需要来分配内存。

例如:向vector中添加10个数据,需要如下编写代码:

 for(int i= 0;i<10; i++) {
   vWidgets.push_back(Widget(i));
  }

6.2 获取vector中指定位置的数据

  vector里面的数据是动态分配的,使用push_back()的一系列分配空间常常决定于文件或一些数据源。

如果想知道vector存放了多少数据,可以使用empty()。

获取vector的大小,可以使用size()。

例如,如果想获取一个vector v的大小,但不知道它是否为空,或者已经包含了数据,如果为空想设置为-1,你可以使用下面的代码实现:

 int nSize = v.empty() ? -1 : static_cast(v.size());

6.3 访问vector中的数据

使用两种方法来访问vector。

1、 vector::at()

2、 vector::operator[]

  operator[]主要是为了与C语言进行兼容。它可以像C语言数组一样操作。

但at()是我们的首选,因为at()进行了边界检查,如果访问超过了vector的范围,将抛出一个例外。

由于operator[]容易造成一些错误,所有我们很少用它,下面进行验证一下:

分析下面的代码:

vector v;
  v.reserve(10);
  
for(int i=0; i<7; i++) {
   v.push_back(i);
  }
  
try {int iVal1 = v[7];
   // not bounds checked - will not throw
   int iVal2 = v.at(7);
   // bounds checked - will throw if out of range
  } 
catch(const exception& e) {
   cout << e.what();
  }

6.3 删除vector中的数据

vector能够非常容易地添加数据,也能很方便地取出数据,同样vector提供了erase(),pop_back(),clear()来删除数据,当删除数据时,应该知道要删除尾部的数据,或者是删除所有数据,还是个别的数据。

Remove_if()算法 如果要使用remove_if(),需要在头文件中包含如下代码::

  #include

Remove_if()有三个参数:

  1、 iterator _First:指向第一个数据的迭代指针。

  2、 iterator _Last:指向最后一个数据的迭代指针。

  3、 predicate _Pred:一个可以对迭代操作的条件函数。

6.4 条件函数

条件函数是一个按照用户定义的条件返回是或否的结果,是最基本的函数指针,或是一个函数对象。

这个函数对象需要支持所有的函数调用操作,重载operator()()操作。

remove_if()是通过unary_function继承下来的,允许传递数据作为条件。

例如,假如想从一个vector中删除匹配的数据,如果字串中包含了一个值,从这个值开始,从这个值结束。

首先应该建立一个数据结构来包含这些数据,类似代码如下:

#include 
enum findmodes {
FM_INVALID = 0,FM_IS, FM_STARTSWITH, FM_ENDSWITH, FM_CONTAINS
};
typedef struct tagFindStr {
 UINT iMode;
 CString szMatchStr;
} FindStr;
typedef FindStr* LPFINDSTR;

然后处理条件判断:

class FindMatchingString : public std::unary_function {
public:
 FindMatchingString(const LPFINDSTR lpFS) :
 m_lpFS(lpFS) {}
 bool operator()(CString& szStringToCompare) const {
  bool retVal = false;
  
switch (m_lpFS->iMode) {
  case FM_IS: {
   retVal = (szStringToCompare == m_lpFDD->szMatchStr);
   break;
  }
  case FM_STARTSWITH: {
   retVal = (szStringToCompare.Left(m_lpFDD->szMatchStr.GetLength())
   == m_lpFDD->szWindowTitle);
   break;
  }
  case FM_ENDSWITH: {
   retVal = (szStringToCompare.Right(m_lpFDD->szMatchStr.GetLength())
   == m_lpFDD->szMatchStr);
  break;
  }
  case FM_CONTAINS: {
   retVal = (szStringToCompare.Find(m_lpFDD->szMatchStr) != -1);
   break;
  }
  }
  return retVal;
}
private:
 LPFINDSTR m_lpFS;
};

通过这个操作你可以从vector中有效地删除数据:

FindStr fs;
  fs.iMode = FM_CONTAINS;
  fs.szMatchStr = szRemove;
  vs.erase(std::remove_if(vs.begin(),vs.end(),FindMatchingString(&fs)),vs.end());

Remove(),remove_if()等所有的移出操作都是建立在一个迭代范围上的,不能操作容器中的数据。

所以在使用remove_if(),实际上操作的时容器里数据的上面的。

看到remove_if()实际上是根据条件对迭代地址进行了修改,在数据的后面存在一些残余的数据,那些需要删除的数据。剩下的数据的位置可能不是原来的数据,但他们是不知道的。

调用erase()来删除那些残余的数据。

注意上面例子中通过erase()删除remove_if()的结果和vs.enc()范围的数据。

7. 综合例子:

//---------------------------------------------------------------------------
#include 
#pragma hdrstop
#include "Unit1.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
#include 
#include 
using namespace std;
struct STResult
{
double Time;
double Xp;
double Yp;
int id;
};
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner)
: TForm(Owner)
{
}
vector ResultVector;
void __fastcall test()
{
//test
//vector ResultVector;
STResult stritem;
stritem.Time = .1;
stritem.Xp = .1;
stritem.Yp = .1;
stritem.id = 1;
ResultVector.push_back( stritem );
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Button1Click(TObject *Sender)
{
test();
assert(ResultVector[0].id == 1);
}
//---------------------------------------------------------------------------

以上所述是小编给大家介绍的C++中vector容器使用详细说明,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对编程小技巧网站的支持!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


一.C语言中的static关键字 在C语言中,static可以用来修饰局部变量,全局变量以及函数。在不同的情况下static的作用不尽相同。 (1)修饰局部变量 一般情况下,对于局部变量是存放在栈区的,并且局部变量的生命周期在该语句块执行结束时便结束了。但是如果用static进行修饰的话,该变量便存
浅谈C/C++中的指针和数组(二) 前面已经讨论了指针和数组的一些区别,然而在某些情况下,指针和数组是等同的,下面讨论一下什么时候指针和数组是相同的。C语言标准对此作了说明:规则1:表达式中的数组名被编译器当做一个指向该数组第一个元素的指针; 注:下面几种情况例外 1)数组名作为sizeof的操作数
浅谈C/C++中的指针和数组(一)指针是C/C++的精华,而指针和数组又是一对欢喜冤家,很多时候我们并不能很好的区分指针和数组,对于刚毕业的计算机系的本科生很少有人能够熟练掌握指针以及数组的用法和区别。造成这种原因可能跟现在大学教学以及现在市面上流行的很多C或者C++教程有关,这些教程虽然通俗易懂,
从两个例子分析C语言的声明 在读《C专家编程》一书的第三章时,书中谈到C语言的声明问题,《C专家编程》这本书只有两百多页,却花了一章的内容去阐述这个问题,足以看出这个问题的重要性,要想透彻理解C语言的声明问题仅仅看书是远远不够的,需要平时多实践并大量阅读别人写的代码。下面借鉴《C专家编程》书中的两个
C语言文件操作解析(一)在讨论C语言文件操作之前,先了解一下与文件相关的东西。一.文本文件和二进制文件 文本文件的定义:由若干行字符构成的计算机文件,存在于计算机系统中。文本文件只能存储文件中的有效字符信息,不能存储图像、声音等信息。狭义上的二进制文件则指除开文本文件之外的文件,如图片、DOC文档。
C语言文件操作解析(三) 在前面已经讨论了文件打开操作,下面说一下文件的读写操作。文件的读写操作主要有4种,字符读写、字符串读写、块读写以及格式化读写。一.字符读写 字符读写主要使用两个函数fputc和fgetc,两个函数的原型是: int fputc(int ch,FILE *fp);若写入成功则
浅谈C语言中的位段 位段(bit-field)是以位为单位来定义结构体(或联合体)中的成员变量所占的空间。含有位段的结构体(联合体)称为位段结构。采用位段结构既能够节省空间,又方便于操作。 位段的定义格式为: type [var]:digits 其中type只能为int,unsigned int,s
C语言文件操作解析(五)之EOF解析 在C语言中,有个符号大家都应该很熟悉,那就是EOF(End of File),即文件结束符。但是很多时候对这个理解并不是很清楚,导致在写代码的时候经常出错,特别是在判断文件是否到达文件末尾时,常常出错。1.EOF是什么? 在VC中查看EOF的定义可知: #def
关于VC+ʶ.0中getline函数的一个bug 最近在调试程序时,发现getline函数在VC+ʶ.0和其他编译器上运行结果不一样,比如有如下这段程序:#include &lt;iostream&gt;#include &lt;string&gt;using namespace std;int
C/C++浮点数在内存中的存储方式 任何数据在内存中都是以二进制的形式存储的,例如一个short型数据1156,其二进制表示形式为00000100 10000100。则在Intel CPU架构的系统中,存放方式为 10000100(低地址单元) 00000100(高地址单元),因为Intel CPU
浅析C/C++中的switch/case陷阱 先看下面一段代码: 文件main.cpp#includeusing namespace std;int main(int argc, char *argv[]){ int a =0; switch(a) { case ...
浅谈C/C++中的typedef和#define 在C/C++中,我们平时写程序可能经常会用到typedef关键字和#define宏定义命令,在某些情况下使用它们会达到相同的效果,但是它们是有实质性的区别,一个是C/C++的关键字,一个是C/C++的宏定义命令,typedef用来为一个已有的数据类型
看下面一道面试题:#include&lt;stdio.h&gt;#include&lt;stdlib.h&gt;int main(void) { int a[5]={1,2,3,4,5}; int *ptr=(int *)(&amp;aʱ); printf(&quot;%d,%d&quot;,*(
联合体union 当多个数据需要共享内存或者多个数据每次只取其一时,可以利用联合体(union)。在C Programming Language 一书中对于联合体是这么描述的: 1)联合体是一个结构; 2)它的所有成员相对于基地址的偏移量都为0; 3)此结构空间要大到足够容纳最&quot;宽&quo
从一个程序的Bug解析C语言的类型转换 先看下面一段程序,这段程序摘自《C 专家编程》:#include&lt;stdio.h&gt;int array[]={23,34,12,17,204,99,16};#define TOTAL_ELEMENTS (sizeof(array)/sizeof(ar
大端和小端 嵌入式开发者应该对大端和小端很熟悉。在内存单元中数据是以字节为存储单位的,对于多字节数据,在小端模式中,低字节数据存放在低地址单元,而在大端模式中,低字节数据存放在高地址单元。比如一个定义一个short型的变量a,赋值为1,由于short型数据占2字节。在小端模式中,其存放方式为0X40
位运算和sizeof运算符 C语言中提供了一些运算符可以直接操作整数的位,称为位运算,因此位运算中的操作数都必须是整型的。位运算的效率是比较高的,而且位运算运用好的话会达到意想不到的效果。位运算主要有6种:与(&amp;),或(|),取反(~),异或(^),左移(&gt;)。1.位运算中的类型转换位
C语言文件操作解析(四)在文件操作中除了打开操作以及读写操作,还有几种比较常见的操作。下面介绍一下这些操作中涉及到的函数。一.移动位置指针的函数 rewind函数和fseek函数,这两个函数的原型是:void rewind(FILE *fp); 将位置指针移动到文件首 int fseek(FILE
结构体字节对齐 在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排
C语言文件操作解析(二)C语言中对文件进行操作必须首先打开文件,打开文件主要涉及到fopen函数。fopen函数的原型为 FILE* fopen(const char *path,const char *mode) 其中path为文件路径,mode为打开方式 1)对于文件路径,只需注意若未明确给出绝