C语言文件操作解析(五)之EOF解析

                                                       C语言文件操作解析(五)之EOF解析

       在C语言中,有个符号大家都应该很熟悉,那就是EOF(End of File),即文件结束符。但是很多时候对这个理解并不是很清楚,导致在写代码的时候经常出错,特别是在判断文件是否到达文件末尾时,常常出错。

1.EOF是什么?

   在VC中查看EOF的定义可知:

   #define EOF     (-1)

   EOF只是代表一个整形常量-1。因此很多人认为在文件的末尾存在这个结束标志EOF,这种观点是错误的。事实上在文件的末尾是不存在这个标志的。那么有人会问那下面的程序如何解释?

    char ch;
while((ch=fgetc(fp))!=EOF)
{
printf("%c\n",ch);
}

   书上都通过这样的代码去判断是否读取到文本文件末尾,就是当读取到EOF的时候就结束操作。这种理解是错误的。

   先看一下函数fgetc的原型:

   int fgetc(FILE *fp);

  事实上在fgetc函数内部,每次都是读取一个字节的数据,而且这一个字节的数据是以unsigned即无符号型处理的,然后将这一个字节的数据赋给一个int型变量作为返回值返回,因此无论从文件中读取的是什么数据,作为无符号型赋值给一个int型变量,返回值不可能是负数。比如当读取到数据0xFA时,因为是以无符号处理的,因此在将0xFA赋值给int型变量的时,int型变量的高位是填充0的(为什么填充0,跟汇编语言里面的符号扩展类似,在后面会提到),因此返回的结果是0X00 00 00 FA,始终不会是负数.而若读取到文件末尾的时候,即没有数据可供读取的时候,那么返回EOF,即-1,这个-1是一个int型常量,二进制表示是0x FF FF FF FF。

    上面的代码具有很大的局限性,因为其只能判断是否到达文本文件的末尾,而不能对二进制文件进行准确的判断。因为正常情况下,文本文件中无论如何是无法读取到-1(0x FF)这个数据,因此可以判断。但是对于二进制文件不同,很可能读到的一个字节的数据就是0xFF,那么返回值此时就是-1,但是此时还未到达文件末尾,造成错误的判断。

    那么有没有办法解决?可以将ch定义为int型即可。

    下面来比较一下下面这段程序和上面程序在执行时的区别。

    int ch;
while((ch=fgetc(fp))!=EOF)
{
printf("%c\n",ch);
}

     假如在文件中读取到的数据是0xFA。

    那么对于上面一段程序的执行过程是:

    将0xFA先赋值给一个int型变量(假如是a),那么此时a为0x 00 00 00 FA,当将返回值a返回给变量ch时,由于ch是char型的,只有8位,那么只将a的低8位赋给ch,那么此时ch为0x FA,而ch是作为有符号处理的,那么此时ch的值肯定是负数。

    而若将ch定义为int型,执行过程为:

    将0xFA先赋值给一个int型变量(假如是a),那么此时a为0x 00 00 00 FA,当将返回值a返回给变量ch时,由于ch也是int型的,因此ch为0x 00 00 00 FA,是一个正数,两段程序执行得到的结果完全不同。

    下面看一下若读取到的数据是0x FF(此时未到文件末尾)时,是什么结果。

    若ch为char型,则当将返回值0x 00 00 00 FF返回时,取低8位赋给ch,那么此时ch为-1,此时会误判为到达文件末尾;

    而若ch为int型,则当将返回值0x 00 00 00 FF返回时,ch的值为0x 00 00 00 FF,此时ch不为-1,不会误判为文件末尾。

    (当然上面所述成立必须是在读取不出错的情况下才成立)

   所以很多情况下会用到函数feof.

二.feof

   feof函数的原型是

   int feof(FILE *fp);

   若到达文件末尾则返回一个非零值,否则返回0。

   在VC中查看feof函数的定义:

   #define _IOEOF          0x0010

   #define feof(_stream)     ((_stream)->_flag & _IOEOF)

   可知feof函数判断是否到达文件末尾时与_flag这个标志有关。

   下面看一下这段程序:

#include<stdio.h>
#include<stdlib.h>

int main(void)
{
FILE *fp;
int ch;
if((fp=fopen("test.txt","w+"))==NULL)
{
printf("can not open file\n");
exit(0);
}
for(ch=65;ch<=70;ch++)
{
fputc(ch,fp);
}
rewind(fp);
while(feof(fp)==0)
{
ch=fgetc(fp);
printf("%0X\n",ch);
}
fclose(fp);
return 0;
}

执行结果是:

41
42
43
44
45
46
FFFFFFFF
Press any key to continue

为什么最后打印结果会多打印一个FFFFFFFF?不是只往文件中写入了数据65-70么?

先看一下C++ Reference中关于feof函数的描述(C++ Reference是一个比较好的网站,里面是关于C++所有库函数的描述,网址在博客首页的链接中有,http://www.cplusplus.com/reference/):

Checks whether the End-of-File indicator associated with stream is set, returning a value different from zero if it is.
This indicator is generally set by a previous operation on the stream that reached the End-of-File.

从描述中可知,只有当与文件关联的流到达文件末尾时,此时若再进行读取操作,文件结束的标志(上面所述的_flag)才会被重新置位。

因此在上述程序中,当读取完最后一个字节的数据后,文件结束标志并没有被置位,只有当位置指针到达末尾时,再发生读取操作时,而此时又没有数据可供读取,因此返回-1,所以打印出的结果中会多一个FFFFFFFF,在这之后才会将_flag重新置位,此时feof函数才能检测出已经到达了文件末尾。

那么可以通过下面的办法解决这个问题:

    ch=fgetc(fp);
while(feof(fp)==0)
{
printf("%0X\n",ch);
ch=fgetc(fp);
}

这样就不会多打印一个FFFFFFFF了。

在上面提到汇编语言中符号扩展的问题,其实在C语言中属于数据类型转换的范畴。下面简要说明一下:

符号扩展只针对将字长小的数据赋给字长大的数据时存在,若是字长大的数据赋给字长小的数据,取低位即可。

下面看一段程序:

#include<stdio.h>

int main(void)
{
unsigned char ch1=0XFF;
char ch2=0XFF;
char ch3=0X73;
int a=ch1;
int b=ch2;
int c=ch3;
printf("%d\n%d\n%d\n",a,b,c);
return 0;
}


执行结果为:

255

-1

115

原因是由于ch1、ch2、ch3都是char型变量,只占一个字节,区别在于ch1是无符号的,在将ch1赋值给a时,ch1是看做无符号数据进行处理的,那么在填充a的高位是用0去填充;而对于ch2和ch3都是有符号的,那么在填充高位时就要注意了,若ch2的最高位为0,那么表示ch2是正数,此时填充高位用0填充,而若ch2的最高位为1,则填充高位数据用1填充。

如程序执行的结果所示,由于ch2的最高位为1,那么在填充b的高位的时候会用1去填充,那么b为0X FF FF FF FF;而ch3的最高位为0,那么填充c的高位用0填充,所以c的值为0x 00 00 00 73.

原文地址:https://www.cnblogs.com/dolphin0520/archive/2011/10/13/2210459.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


一.C语言中的static关键字 在C语言中,static可以用来修饰局部变量,全局变量以及函数。在不同的情况下static的作用不尽相同。 (1)修饰局部变量 一般情况下,对于局部变量是存放在栈区的,并且局部变量的生命周期在该语句块执行结束时便结束了。但是如果用static进行修饰的话,该变量便存
浅谈C/C++中的指针和数组(二) 前面已经讨论了指针和数组的一些区别,然而在某些情况下,指针和数组是等同的,下面讨论一下什么时候指针和数组是相同的。C语言标准对此作了说明:规则1:表达式中的数组名被编译器当做一个指向该数组第一个元素的指针; 注:下面几种情况例外 1)数组名作为sizeof的操作数
浅谈C/C++中的指针和数组(一)指针是C/C++的精华,而指针和数组又是一对欢喜冤家,很多时候我们并不能很好的区分指针和数组,对于刚毕业的计算机系的本科生很少有人能够熟练掌握指针以及数组的用法和区别。造成这种原因可能跟现在大学教学以及现在市面上流行的很多C或者C++教程有关,这些教程虽然通俗易懂,
从两个例子分析C语言的声明 在读《C专家编程》一书的第三章时,书中谈到C语言的声明问题,《C专家编程》这本书只有两百多页,却花了一章的内容去阐述这个问题,足以看出这个问题的重要性,要想透彻理解C语言的声明问题仅仅看书是远远不够的,需要平时多实践并大量阅读别人写的代码。下面借鉴《C专家编程》书中的两个
C语言文件操作解析(一)在讨论C语言文件操作之前,先了解一下与文件相关的东西。一.文本文件和二进制文件 文本文件的定义:由若干行字符构成的计算机文件,存在于计算机系统中。文本文件只能存储文件中的有效字符信息,不能存储图像、声音等信息。狭义上的二进制文件则指除开文本文件之外的文件,如图片、DOC文档。
C语言文件操作解析(三) 在前面已经讨论了文件打开操作,下面说一下文件的读写操作。文件的读写操作主要有4种,字符读写、字符串读写、块读写以及格式化读写。一.字符读写 字符读写主要使用两个函数fputc和fgetc,两个函数的原型是: int fputc(int ch,FILE *fp);若写入成功则
浅谈C语言中的位段 位段(bit-field)是以位为单位来定义结构体(或联合体)中的成员变量所占的空间。含有位段的结构体(联合体)称为位段结构。采用位段结构既能够节省空间,又方便于操作。 位段的定义格式为: type [var]:digits 其中type只能为int,unsigned int,s
C语言文件操作解析(五)之EOF解析 在C语言中,有个符号大家都应该很熟悉,那就是EOF(End of File),即文件结束符。但是很多时候对这个理解并不是很清楚,导致在写代码的时候经常出错,特别是在判断文件是否到达文件末尾时,常常出错。1.EOF是什么? 在VC中查看EOF的定义可知: #def
关于VC+ʶ.0中getline函数的一个bug 最近在调试程序时,发现getline函数在VC+ʶ.0和其他编译器上运行结果不一样,比如有如下这段程序:#include &lt;iostream&gt;#include &lt;string&gt;using namespace std;int
C/C++浮点数在内存中的存储方式 任何数据在内存中都是以二进制的形式存储的,例如一个short型数据1156,其二进制表示形式为00000100 10000100。则在Intel CPU架构的系统中,存放方式为 10000100(低地址单元) 00000100(高地址单元),因为Intel CPU
浅析C/C++中的switch/case陷阱 先看下面一段代码: 文件main.cpp#includeusing namespace std;int main(int argc, char *argv[]){ int a =0; switch(a) { case ...
浅谈C/C++中的typedef和#define 在C/C++中,我们平时写程序可能经常会用到typedef关键字和#define宏定义命令,在某些情况下使用它们会达到相同的效果,但是它们是有实质性的区别,一个是C/C++的关键字,一个是C/C++的宏定义命令,typedef用来为一个已有的数据类型
看下面一道面试题:#include&lt;stdio.h&gt;#include&lt;stdlib.h&gt;int main(void) { int a[5]={1,2,3,4,5}; int *ptr=(int *)(&amp;aʱ); printf(&quot;%d,%d&quot;,*(
联合体union 当多个数据需要共享内存或者多个数据每次只取其一时,可以利用联合体(union)。在C Programming Language 一书中对于联合体是这么描述的: 1)联合体是一个结构; 2)它的所有成员相对于基地址的偏移量都为0; 3)此结构空间要大到足够容纳最&quot;宽&quo
从一个程序的Bug解析C语言的类型转换 先看下面一段程序,这段程序摘自《C 专家编程》:#include&lt;stdio.h&gt;int array[]={23,34,12,17,204,99,16};#define TOTAL_ELEMENTS (sizeof(array)/sizeof(ar
大端和小端 嵌入式开发者应该对大端和小端很熟悉。在内存单元中数据是以字节为存储单位的,对于多字节数据,在小端模式中,低字节数据存放在低地址单元,而在大端模式中,低字节数据存放在高地址单元。比如一个定义一个short型的变量a,赋值为1,由于short型数据占2字节。在小端模式中,其存放方式为0X40
位运算和sizeof运算符 C语言中提供了一些运算符可以直接操作整数的位,称为位运算,因此位运算中的操作数都必须是整型的。位运算的效率是比较高的,而且位运算运用好的话会达到意想不到的效果。位运算主要有6种:与(&amp;),或(|),取反(~),异或(^),左移(&gt;)。1.位运算中的类型转换位
C语言文件操作解析(四)在文件操作中除了打开操作以及读写操作,还有几种比较常见的操作。下面介绍一下这些操作中涉及到的函数。一.移动位置指针的函数 rewind函数和fseek函数,这两个函数的原型是:void rewind(FILE *fp); 将位置指针移动到文件首 int fseek(FILE
结构体字节对齐 在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排
C语言文件操作解析(二)C语言中对文件进行操作必须首先打开文件,打开文件主要涉及到fopen函数。fopen函数的原型为 FILE* fopen(const char *path,const char *mode) 其中path为文件路径,mode为打开方式 1)对于文件路径,只需注意若未明确给出绝