哈希加密详解和md5、sha1、sha256、Java 工具类

前言
在所有的加密算法中使用最多的就是哈希加密了,很多人第一次接触的加密算法如MD5、SHA1都是典型的哈希加密算法,而哈希加密除了用在密码加密上,它还有很多的用途,如提取内容摘要、生成签名、文件对比、区块链等等。这篇文章就是想详细的讲解一下哈希加密,并分享一个哈希加密的工具类。

概述
哈希函数(Hash Function),也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要(Message Digest)。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。

它的函数表达式为:h=H(m)

无论输入是什么数字格式、文件有多大,输出都是固定长度的比特串。以比特币使用的Sh256算法为例,无论输入是什么数据文件,输出就是256bit。

哈希算法

把网址A,转换成数字1。网址B,转换成数字2。

一个网址X,转换成数字N,根据数字N作为下标,就可以快速地查找出网址X的信息。这个转换的过程就是哈希算法。

比如这里有一万首歌,给你一首新的歌X,要求你确认这首歌是否在那一万首歌之内。

无疑,将一万首歌一个一个比对非常慢。但如果存在一种方式,能将一万首歌的每首数据浓缩到一个数字(称为哈希码)中,于是得到一万个数字,那么用同样的算法计算新的歌X的编码,看看歌X的编码是否在之前那一万个数字中,就能知道歌X是否在那一万首歌中。

作为例子,如果要你组织那一万首歌,一个简单的哈希算法就是让歌曲所占硬盘的字节数作为哈希码。这样的话,你可以让一万首歌“按照大小排序”,然后遇到一首新的歌,只要看看新的歌的字节数是否和已有的一万首歌中的某一首的字节数相同,就知道新的歌是否在那一万首歌之内了。

一个可靠的哈希算法,应该满足:

对于给定的数据M,很容易算出哈希值X=F(M);

根据X很难反算出M;

很难找到M和N使得F(N)=F(M)

总结哈希加密的特点:

易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。

易计算:对于任意给定的消息,计算其Hash值比较容易。

不可逆:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。

抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。

高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。

哈希加密并非不可破解,2004年,王小云教授在国际密码学大会上公布了破解Hash函数的关键技术。

哈希加密和对称/非对称加密对比

主要有这些区别:

哈希密码是不可逆的,因此无法从密文中获取到原文,而对称/非对称加密可以;
哈希密码加密大部分不需要密钥(除了HMAC),而对称/非对称加密需要;
哈希加密不管是短数据还是长数据,加密后得到的密文长度是固定的,而对称/非对称通常和原文的长度成正比;
哈希加密有可能碰撞,虽然理论的哈希加密是不可能碰撞的,但是只是理论,王小云教授之前就提出碰撞的方法。而对于对称/非对称,一个密文用密钥解密后的结果一定是唯一的;
常见的加密算法
MD5信息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。1996年后该算法被证实存在弱点,可以被加以破解,对于需要高度安全性的数据,专家一般建议改用其他算法,如SHA-2。2004年,证实MD5算法无法防止碰撞(collision),因此不适用于安全性认证,如SSL公开密钥认证或是数字签名等用途。

SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦数据处理标准(FIPS)。SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。
SHA-1已经不再视为可抵御有充足资金、充足计算资源的攻击者。2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年前停止接受使用SHA-1算法签名的SSL证书。
2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。

SHA-2/SHA-256
SHA-2有多种不同的位数,导致这个名词有一些混乱。但是无论是“SHA-2”,“SHA-256”或“SHA-256位”,其实都是指同一种加密算法。但是SHA-224”,“SHA-384”或“SHA-512”,表示SHA-2的二进制长度。还要另一种就是会把算法和二进制长度都写上,如“SHA-2 384”。
SSL行业选择SHA作为数字签名的散列算法,从2011到2015,一直以SHA-1位主导算法。但随着互联网技术的提升,SHA-1的缺点越来越突显。从去年起,SHA-2成为了新的标准,所以现在签发的SSL证书,必须使用该算法签名。
也许有人偶尔会看到SHA-2 384位的证书,很少会看到224位,因为224位不允许用于公共信任的证书,512位,不被软件支持。
初步预计,SHA-2的使用年限为五年,但也许会被提前淘汰。这需要时间来验证。


HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,由H.Krawezyk,M.Bellare,R.Canetti于1996年提出的一种基于Hash函数和密钥进行消息认证的方法,并于1997年作为RFC2104被公布,并在IPSec和其他网络协议(如SSL)中得以广泛应用,现在已经成为事实上的Internet安全标准。它可以与任何迭代散列函数捆绑使用。
HMAC运算利用hash算法,以一个消息M和一个密钥K作为输入,生成一个定长的消息摘要作为输出。HMAC算法利用已有的Hash函数,关键问题是如何使用密钥。

HMAC的密钥长度可以是任意大小,如果小于n(hash输出值的大小),那么将会消弱算法安全的强度。建议使用长度大于n的密钥,但是采用长度大的密钥并不意味着增强了函数的安全性。密钥应该是随机选取的,可以采用一种强伪随机发生器,并且密钥需要周期性更新,这样可以减少散列函数弱密钥的危险性以及已经暴露密钥所带来的破坏
使用SHA-1、SHA-224、SHA-256、SHA-384、SHA-512所构造的HMAC,分别称为HMAC-SHA1、HMAC-SHA-224、HMAC-SHA-384、HMAC-SHA-512。
HMAC算法更象是一种加密算法,它引入了密钥,其安全性已经不完全依赖于所使用的Hash算法,安全性主要有以下几点保证。
(1)使用的密钥是双方事先约定的,第三方不可能知道。作为非法截获信息的第三方,能够得到的信息只有作为“挑战”的随机数和作为“响应”的HMAC 结果,无法根据这两个数据推算出密钥。由于不知道密钥,所以无法仿造出一致的响应。
(2)HMAC与一般的加密重要的区别在于它具有“瞬时"性,即认证只在当时有效,而加密算法被破解后,以前的加密结果就可能被解密。
HMAC的安全性依赖于散列函数H的密码学属性:①抗碰撞属性;②当应用于一个单独的消息分组时H的压缩函数的消息认证属性 。

四种算法的用途:MD5、SHA-1可以在一些数据量较小的情况下用来生成信息摘要,他们生成的摘要长度较短,加密速度快,但是摘要长度较短,有碰撞的可能;SHA-256可以用来对一些大数据量的数据来进行加密、或者生成信息摘要,基于它的长摘要长度,碰撞的可能性较低;HMAC引入了密钥,因此其安全性最高,可以很好的用在对密码的加密上;

JAVA工具类
package cn.hengyumo.humor.utils;

import org.apache.commons.codec.binary.Base64;
import org.apache.commons.codec.binary.Hex;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

/**
 * HeaUtil
 * Hash encryption algorithm
 * 哈希加密算法:MD5、SHA-1、SHA-256、HMAC-SHA-1、HMAC-SHA-256
 * 需要导入 org.apache.commons.codec 包
 *
 * @author hengyumo
 * @version 1.0
 * @since 2019/11/12
 */
@SuppressWarnings("WeakerAccess")
public class HeaUtil {

    /**
     * md5加密
     *
     * @param text 内容
     * @return digest 摘要
     * @throws NoSuchAlgorithmException e
     */
    public static String md5(String text) throws NoSuchAlgorithmException {
        MessageDigest messageDigest = MessageDigest.getInstance("MD5");
        byte[] bytes = messageDigest.digest(text.getBytes());
        return Hex.encodeHexString(bytes);
    }

    /**
     * sha1加密
     *
     * @param text 内容
     * @return digest 摘要
     * @throws NoSuchAlgorithmException e
     */
    public static String sha1(String text) throws NoSuchAlgorithmException {
        MessageDigest messageDigest = MessageDigest.getInstance("SHA-1");
        byte[] bytes = messageDigest.digest(text.getBytes());
        return Hex.encodeHexString(bytes);
    }

    /**
     * sha256加密
     *
     * @param text 内容
     * @return digest 摘要
     * @throws NoSuchAlgorithmException e
     */
    public static String sha256(String text) throws NoSuchAlgorithmException {
        MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");
        byte[] bytes = messageDigest.digest(text.getBytes());
        return Hex.encodeHexString(bytes);
    }

    /**
     * hmac-sha1加密
     *
     * @param text 内容
     * @param key 密钥
     *
     * @return 密文
     * @throws Exception e
     */
    public static String hmacSha1(String text,String key) throws Exception {
        SecretKeySpec sk = new SecretKeySpec(key.getBytes(),"HmacSHA1");
        return hmacSha1(text,sk);
    }

    /**
     * hmac-sha1加密
     *
     * @param text 内容
     * @param sk 密钥
     *
     * @return 密文
     * @throws Exception e
     */
    public static String hmacSha1(String text,SecretKeySpec sk) throws Exception {
        Mac mac = Mac.getInstance("HmacSHA1");
        mac.init(sk);
        byte[] rawHmac = mac.doFinal(text.getBytes());
        return new String(Base64.encodeBase64(rawHmac));
    }

    /**
     * 生成 HmacSha1 密钥
     *
     * @param key 密钥字符串
     * @return SecretKeySpec
     */
    public static SecretKeySpec createHmacSha1Key(String key) {
        return new SecretKeySpec(key.getBytes(),"HmacSHA1");
    }

    /**
     * hmac-sha256加密
     *
     * @param text 内容
     * @param key 密钥
     *
     * @return 密文
     * @throws Exception e
     */
    public static String hmacSha256(String text,"HmacSHA256");
        return hmacSha1(text,sk);
    }

    /**
     * hmac-sha256加密
     *
     * @param text 内容
     * @param sk 密钥
     *
     * @return 密文
     * @throws Exception e
     */
    public static String hmacSha256(String text,SecretKeySpec sk) throws Exception {
        Mac mac = Mac.getInstance("HmacSHA256");
        mac.init(sk);
        byte[] rawHmac = mac.doFinal(text.getBytes());
        return new String(Base64.encodeBase64(rawHmac));
    }

    /**
     * 生成 HmacSha256 密钥
     *
     * @param key 密钥字符串
     * @return SecretKeySpec
     */
    public static SecretKeySpec createHmacSha256Key(String key) {
        return new SecretKeySpec(key.getBytes(),"HmacSHA256");
    }

    /**
     * 测试
     *
     * @param args args
     */
    public static void main(String[] args) throws Exception {
        String s = "123456789了踩踩踩";
        System.out.println(md5(s));
        System.out.println(sha1(s));
        System.out.println(sha256(s));
        String k = "ada232@12";
        System.out.println(hmacSha1(s,k));
        s = "aeqnfoavneornqoenr1啊可是到了南方情况无法弄清了我呢010jownfasdfqijqor";
        System.out.println(hmacSha1(s,k));
        SecretKeySpec sk1 = createHmacSha1Key(k);
        System.out.println(hmacSha1(s,sk1));
        SecretKeySpec sk256 = createHmacSha256Key(k);
        System.out.println(hmacSha256(s,sk256));
    }
}


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
输出

d415ffe55bf2e18b9e059be4ab371fe7
15b03a4189d24ca3459e199bbf8de7fc3e4d68f3
e32b84b738416e91198112a57d295ba685a40e55bb114725e8a444efd53d5a01
ck66ZAkPEh+19UIgnX775N3nLyc=
WVJAs/+6OlwkzM1ZEK+t8iMgtyc=
WVJAs/+6OlwkzM1ZEK+t8iMgtyc=
E1sXoiPtnjzMiDRagp08Lt3gBKXE/EU+nLJZpy8hURc=

1
2
3
4
5
6
7
8
备注
使用需要导入maven或jar包


        <!-- https://mvnrepository.com/artifact/commons-codec/commons-codec -->
        <dependency>
            <groupId>commons-codec</groupId>
            <artifactId>commons-codec</artifactId>
            <version>1.12</version>
        </dependency>

1
2
3
4
5
6
7
8
用途探讨
文件、图片等数据的标识码:
对文件进行md5加密,得到一个唯一的文件摘要,把摘要存储,之后再次上传文件时前端先计算摘要,如果文件的摘要在后端发现重复的,那么就不进行上传。这样可以为服务器节省大量的硬盘资源。这主要利用了哈希加密的压缩性、唯一性;
密码加密存储:
密码如果明文存储到数据库是不安全的,这时可以在存储之前先用sha1或者sha256等算法进行加密,加密后进行存储,利用哈希加密的不可逆性,保证了密码存储的安全性,防止密码泄露。
生成数字签名、防止篡改:
所谓的签名,指的是对于一份数据,拥有独一无二的标识=》这标识就是数字签名。生成数字签名的方法就是用md5等哈希算法生成摘要,并将摘要公开,对方获得数据之后,通过再次进行哈希生成摘要后对比公开摘要,就可以确认文件是不是原始的那份,而不是被篡改过的;这主要利用了哈希加密的高灵敏性,消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
防止查表法
所谓查表法针对的就是md5、sha1等哈希加密算法,黑客预先收集一些常用的密码存入表中,预先对表中的密码计算md5、sha1值,之后就可以通过对比表和数据库的密文,来获取到密码的明文;防止查表法的方式有加盐、或者使用HMAC这样的密钥哈希算法,从而使得查表法失效。
参考&引用
通俗易懂的哈希算法讲解
https://blog.csdn.net/zongyue_wang/article/details/81947142
MD5
https://baike.baidu.com/item/MD5/212708?fr=aladdin
SHA-1
https://baike.baidu.com/item/SHA-1/1699692?fromtitle=SHA1&fromid=8812671&fr=aladdin
散列算法:SHA-1,SHA-2和SHA-256之间的区别(下)
https://www.jianshu.com/p/68c664b663f4
hmac
https://baike.baidu.com/item/hmac/7307543?fr=aladdin
HMAC的图解
https://blog.csdn.net/chengqiuming/article/details/82822933
————————————————
 

原文地址:https://blog.csdn.net/thlzjfefe" target="_blank" rel="noopener" title="thlzjfefe">thlzjfefe</a> <img class="article-time-img article-heard-img" src="https://csdnimg.cn/release/blo

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


背景:计算机内部用补码表示二进制数。符号位1表示负数,0表示正数。正数:无区别,正数 的原码= 反码 = 补码重点讨论负数若已知 负数 -8,则其原码为:1000 1000,(1为符号位,为1代表负数,为0代表正数)反码为:1111 0111,(符号位保持不变,其他位置按位取反)补码为:1111 1000,(反码 + 1)即在计算机中 用 1111 1000表示 -8若已知补码为 1111 1000,如何求其原码呢?(1)方法1:求负数 原码---&gt;补...
大家好,我们现在来讲解关于加密方面的知识,说到加密我认为不得不提MD5,因为这是一种特殊的加密方式,它到底特殊在哪,现在我们就开始学习它全称:message-digest algorithm 5翻译过来就是:信息 摘要 算法 5加密和摘要,是不一样的加密后的消息是完整的;具有解密算法,得到原始数据;摘要得到的消息是不完整的;通过摘要的数据,不能得到原始数据;所以,当看到很多人说,md5,加密,解密的时候,呵呵一笑就好了。MD5长度有人说md5,128位,32位,16位,到
相信大家在大学的《算法与数据结构》里面都学过快速排序(QuickSort), 知道这种排序的性能很好,JDK里面直到JDK6用的都是这种经典快排的算法。但是到了JDK7的时候JDK内置的排序算法已经由经典快排变成了Dual-Pivot排序算法。那么Dual-Pivot到底是何方圣神,能比我们学过的经典快排还要快呢?我们一起来看看。经典快排在学习新的快排之前,我们首先来复习一下经典快排,它的核心思想是:接受一个数组,挑一个数(pivot),然后把比它小的那一摊数放在它的左边,把比它大的那一摊数放
加密在编程中的应用的是非常广泛的,尤其是在各种网络协议之中,对称/非对称加密则是经常被提及的两种加密方式。对称加密我们平时碰到的绝大多数加密就是对称加密,比如:指纹解锁,PIN 码锁,保险箱密码锁,账号密码等都是使用了对称加密。对称加密:加密和解密用的是同一个密码或者同一套逻辑的加密方式。这个密码也叫对称秘钥,其实这个对称和不对称指的就是加密和解密用的秘钥是不是同一个。我在上大学的时候做过一个命令行版的图书馆管理系统作为 C 语言课设。登入系统时需要输入账号密码,当然,校验用户输入的密码
前言我的目标是写一个非常详细的关于diff的干货,所以本文有点长。也会用到大量的图片以及代码举例,目的让看这篇文章的朋友一定弄明白diff的边边角角。先来了解几个点...1. 当数据发生变化时,vue是怎么更新节点的?要知道渲染真实DOM的开销是很大的,比如有时候我们修改了某个数据,如果直接渲染到真实dom上会引起整个dom树的重绘和重排,有没有可能我们只更新我们修改的那一小块dom而不要更新整个dom呢?diff算法能够帮助我们。我们先根据真实DOM生成一颗virtual DOM,当v
对称加密算法 所有的对称加密都有一个共同的特点:加密和解密所用的密钥是相同的。现代对称密码可以分为序列密码和分组密码两类:序列密码将明文中的每个字符单独加密后再组合成密文;而分组密码将原文分为若干个组,每个组进行整体加密,其最终加密结果依赖于同组的各位字符的具体内容。也就是说,分组加密的结果不仅受密钥影响,也会受到同组其他字符的影响。序列密码分组密码序列密码的安全性看上去要更弱一些,但是由于序列密码只需要对单个位进行操作,因此运行速度比分组加密要快...
本文介绍RSA加解密中必须考虑到的密钥长度、明文长度和密文长度问题,对第一次接触RSA的开发人员来讲,RSA算是比较复杂的算法,RSA算法自己其实也很简单,RSA的复杂度是由于数学家把效率和安全也考虑进去的缘故。html本文先只谈密钥长度、明文长度和密文长度的概念知识,RSA的理论及示例等之后再谈。提到密钥,咱们不得不提到RSA的三个重要大数:公钥指数e、私钥指数d和模值n。这三个大数是咱们使用RSA时须要直接接触的,理解了本文的基础概念,即便未接触过RSA的开发人员也能应对自如的使用RSA相关函数库,
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中。和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中。算法:1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为03. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为14. 判断某个key是否在集合时
你会用什么样的算法来为你的用户保存密码?如果你还在用明码的话,那么一旦你的网站被hack了,那么你所有的用户口令都会被泄露了,这意味着,你的系统或是网站就此完蛋了。所以,我们需要通过一些不可逆的算法来保存用户的密码。比如:MD5, SHA1, SHA256, SHA512, SHA-3,等Hash算法。这些算法都是不可逆的。系统在验证用户的口令时,需要把Hash加密过后的口令与后面存放口令的数据库中的口令做比较,如果一致才算验证通过。但你觉得这些算法好吗?我说的是:MD5, SHA1, SHA256,
在日常工作中经常会使用excel,有时在表格中需要筛选出重复的数据,该怎么操作呢?1、以下图中的表格数据为例,筛选出列中重复的内容;2、打开文件,选中需要筛选的数据列,依次点击菜单项【开始】-【条件格式】-【突出显示单元格规则】-【重复值】;3、将重复的值突出颜色显示;4、选中数据列,点击【数据】-【筛选】;5、点击列标题的的下拉小三角,点击【按颜色筛选】,即可看到重复的数据;...
工作中经常有和第三方机构联调接口的事情,顾将用到过的做以记录。 在和第三方联调时,主要步骤为:网络、加解密/签名验签、接口数据等,其中接口数据没啥好说的。 在联调前就需要先将两边的网络连通,一般公司的生产环境都加了防火墙,测试环境有的是有防火墙,有的则没有防火墙,这个需要和第三方人员沟通,如果有防火墙的就需要将我们的出口ip或域名发送给第三方做配置,配置了之后网络一般都是通的。加解密与签名验签: 一般第三方公司都会有加解密或签名验签的,毕竟为了数据安全。一般就是三...
此文章不包含认证机制。任何应用考虑到安全,绝不能明文的方式保存密码。密码应该通过某种方式进行加密。如今已有很多标准的算法比如SHA或者MD5再结合salt(盐)使用是一个不错的选择。废话不多说!直接开始SpringBoot 中提供了Spring Security:BCryptPasswordEncoder类,实现Spring的PasswordEncoder接口使用BCrypt强哈希方法来加密密码。第一步:pom导入依赖:&lt;dependency&gt; &lt;groupId...
前言在所有的加密算法中使用最多的就是哈希加密了,很多人第一次接触的加密算法如MD5、SHA1都是典型的哈希加密算法,而哈希加密除了用在密码加密上,它还有很多的用途,如提取内容摘要、生成签名、文件对比、区块链等等。这篇文章就是想详细的讲解一下哈希加密,并分享一个哈希加密的工具类。概述哈希函数(Hash Function),也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息
#快速排序解释 快速排序 Quick Sort 与归并排序一样,也是典型的分治法的应用。 (如果有对 归并排序还不了解的童鞋,可以看看这里哟~ 归并排序)❤❤❤ ###快速排序的分治模式 1、选取基准
#堆排序解释 ##什么是堆 堆 heap 是一种近似完全二叉树的数据结构,其满足一下两个性质 1. 堆中某个结点的值总是不大于(或不小于)其父结点的值; 2. 堆总是一棵完全二叉树 将根结点最大的堆叫
#前言 本文章是建立在插入排序的基础上写的喔,如果有对插入排序还有不懂的童鞋,可以看看这里。 ❤❤❤ 直接/折半插入排序 2路插入排序 ❤❤❤ #希尔排序解释 希尔排序 Shell Sort 又名&q
#归并排序解释 归并排序 Merge Sort 是典型的分治法的应用,其算法步骤完全遵循分治模式。 ##分治法思想 分治法 思想: 将原问题分解为几个规模较小但又保持原问题性质的子问题,递归求解这些子
#前言 本文章是建立在冒泡排序的基础上写的,如还有对 冒泡排序 不了解的童鞋,可以看看这里哦~ 冒泡排序 C++ #双向冒泡排序原理 双向冒泡排序 的基本思想与 冒泡排序还是一样的。冒泡排序 每次将相
#插入排序解释 插入排序很好理解,其步骤是 :先将第一个数据元素看作是一个有序序列,后面的 n-1 个数据元素看作是未排序序列。对后面未排序序列中的第一个数据元素在这个有序序列中进行从后往前扫描,找到
#桶排序解释 ##桶排序思想 桶排序 是一种空间换取时间的排序方式,是非基于比较的。 桶排序 顾名思义,就是构建多个映射数据的桶,将数据放入桶内,对每个桶内元素进行单独排序。假设我们有 n 个待排序的