Kubernetes中Pod的实现原理

在Kubernetes里部署一个应用的过程。Pod,是Kubernetes项目中最小的API对象。更专业说法,是Kubernetes项目的原子调度单位。

Docker容器本质不过“Namespace做隔离,Cgroups做限制,rootfs做文件系统”,为何Kubernetes又搞个Pod?

1 容器的本质是什么?

是进程!就是未来云计算系统中的进程;容器镜像就是这个系统里的“.exe”安装包。

那Kubernetes呢?就是操作系统!

登录到一台Linux机器里,执行如下命令:

$ pstree -g

展示当前系统中正在运行的进程的树状结构。结果:

systemd(1)-+-accounts-daemon(1984)-+-{gdbus}(1984)
           | `-{gmain}(1984)
           |-acpid(2044)
          ...      
           |-lxcfs(1936)-+-{lxcfs}(1936)
           | `-{lxcfs}(1936)
           |-mdadm(2135)
           |-ntpd(2358)
           |-polkitd(2128)-+-{gdbus}(2128)
           | `-{gmain}(2128)
           |-rsyslogd(1632)-+-{in:imklog}(1632)
           |  |-{in:imuxsock) S 1(1632)
           | `-{rs:main Q:Reg}(1632)
           |-snapd(1942)-+-{snapd}(1942)
           |  |-{snapd}(1942)
           |  |-{snapd}(1942)
           |  |-{snapd}(1942)
           |  |-{snapd}(1942)

在一个真正的os,进程并非“孤苦伶仃”独自运行,而是以进程组,“有原则的”组织在一起。该进程树状图中,每个进程后面括号里的数字,就是它的进程组ID(Process Group ID, PGID)。

如rsyslogd程序负责Linux日志处理。可见rsyslogd的主程序main,和它要用到的内核日志模块imklog等,同属1632进程组。这些进程相互协作,共同完成rsyslogd程序的职责。

对os,这样的进程组更方便管理。Linux操作系统只需将信号,如SIGKILL信号,发给一个进程组,该进程组中的所有进程就都会收到这个信号而终止运行。

而Kubernetes所做的,其实就是将“进程组”的概念映射到容器技术,并使其成为云计算“os”里的“一等公民”。

1.1 为何要这么做?

Borg项目的开发和实践中,Google发现,他们部署的应用,往往存在类似“进程和进程组”的关系。即这些应用之间有着密切协作关系,使得它们必须部署在同一台机器。

若事先没有“组”的概念,这种运维关系就很难处理。

以rsyslogd为例。已知rsyslogd由三个进程组成:

  • 一个imklog模块
  • 一个imuxsock模块
  • 一个rsyslogd自己的main函数主进程

这三个进程要运行在同一机器,否则它们之间基于Socket的通信和文件交换,都会有问题。

现在,要把rsyslogd应用给容器化,但受限于容器的“单进程模型”,这三个模块须被分别制作成三个不同容器。而在这三个容器运行时,它们设置的内存配额都是1GB。

容器的“单进程模型”,并非指容器里只能运行“一个”进程,而是容器没有管理多个进程的能力。因为容器里PID=1的进程就是应用本身,其他进程都是这个PID=1进程的子进程。可用户编写的应用,并不能像正常os里的init进程或systemd那样拥有进程管理的功能。如你的应用是个Java Web程序(PID=1),然后你执行docker exec在后台启动了一个Nginx进程(PID=3)。可当该Nginx进程异常退出时,你怎么知道?该进程退出后的GC工作,又由谁去做?

假设Kubernetes集群上有两个节点:

  • node-1上有3 GB可用内存
  • node-2有2.5 GB可用内存

假设我用Swarm运行该rsyslogd程序。为能够让这三容器都运行在同一机器,须在另外两个容器设置affinity=main(与main容器有亲密性)的约束,即:它们俩必须和main容器运行在同一机器。

然后,顺序执行:

  • docker run main
  • docker run imklog
  • docker run imuxsock

创建这三个容器。这样,这三个容器都会进入Swarm待调度队列。然后,main容器和imklog容器都先后出队并被调度到node-2(这case完全有可能)。

可当imuxsock容器出队开始被调度时,Swarm就懵了:node-2上的可用资源只有0.5 GB了,并不足以运行imuxsock容器;可根据affinity=main的约束,imuxsock容器又只能运行在node-2。

这就是典型的成组调度(gang scheduling)没有被妥善处理的case。如Mesos就有个资源囤积(resource hoarding)机制,会在所有设置了Affinity约束的任务都达到时,才开始对它们统一调度。而在Google Omega论文提出使用乐观调度处理冲突的方法,即:先不管这些冲突,而是通过精心设计的回滚机制在出现冲突后解决问题。

可都谈不上完美。资源囤积带来不可避免的调度效率损失和死锁可能;而乐观调度的复杂程度,不是常规技术团队所能驾驭。

但到Kubernetes这问题迎刃而解:Pod是Kubernetes里的原子调度单位。即Kubernetes的调度器统一按Pod而非容器的资源需求进行计算。

所以,像imklog、imuxsock和main函数主进程这样的三个容器,正是典型的由三个容器组成的Pod。Kubernetes调度时,自然就会去选择可用内存3G的node-1节点进行绑定,而不会考虑node-2。

像这样容器间的紧密协作,可称为“超亲密关系”,有“超亲密关系”容器的典型特征包括但不限于:

  • 互相之间会发生直接的文件交换
  • 使用localhost或者Socket文件进行本地通信
  • 会发生非常频繁的远程调用
  • 需要共享某些Linux Namespace(如一个容器要加入另一个容器的Network Namespace)

即并非所有有“关系”的容器都属同一Pod。如PHP应用容器和MySQL虽也发生访问关系,但并没有必要、也不该部署在同一机器,更适合做成两个Pod。

一般都是先学会用Docker这种单容器工具,才开始接触Pod。若Pod设计只是调度考虑,那Kubernetes似乎完全没必要非得把Pod作为“一等公民”?这不故意增加学习门槛?

若只处理“超亲密关系”调度问题,有Borg和Omega论文,Kubernetes项目肯定可以在调度器层解决。但Pod在Kubernetes还有更重要的意义:容器设计模式

2 Pod实现原理

2.1 只是一个逻辑概念

即Kubernetes真正处理的,还是宿主机os上Linux容器的Namespace和Cgroups,而并不存在一个所谓的Pod的边界或隔离环境。

那Pod又怎么被“创建”的?其实是一组共享了某些资源的容器。Pod里的所有容器,共享的是同一Network Namespace,并且可声明共享同一个Volume。

这么看,一个有A、B两个容器的Pod,不就是等同于一个容器(容器A)共享另外一个容器(容器B)的网络和Volume?

这好像通过docker run --net --volumes-from就能实现,如:

$ docker run --net=B --volumes-from=B --name=A image-A ...

若真这么做,容器B就须比容器A先启动,这样一个Pod里的多个容器就不是对等关系,而是拓扑关系。

所以,在Kubernetes Pod的实现需要使用一个中间容器-Infra容器。在该Pod中,Infra容器永远都是第一个被创建的容器,而其他用户定义的容器,则通过Join Network Namespace,与Infra容器关联在一起。组织关系如下:

该Pod有两个用户容器A、B,还有个Infra容器。Kubernetes里的Infra容器一定要占用极少资源,所以它使用特殊镜像:k8s.gcr.io/pause。这是汇编语言编写的、永处于“暂停”状态的容器,解压后的大小也只有100~200KB。

在Infra容器“Hold住”Network Namespace后,用户容器就能加入Infra容器的Network Namespace。所以,若查看这些容器在宿主机上的Namespace文件(该Namespace文件的路径),它们指向的值一定完全一样。

即对Pod里的容器A、B:

  • 它们能直接使用localhost进行通信
  • 它们看到的网络设备跟Infra容器看到的完全一样
  • 一个Pod只有一个IP地址,也就是这个Pod的Network Namespace对应的IP地址
  • 其他所有网络资源,都是一个Pod一份,且被该Pod中的所有容器共享
  • Pod的生命周期只跟Infra容器一致,与容器A、B无关

而对同一Pod里的所有用户容器,它们的进出流量,也可认为都是通过Infra容器完成。将来若你要为Kubernetes开发一个网络插件,应重点考虑如何配置这个Pod的Network Namespace,而非每个用户容器如何使用你的网络配置,这没意义。

即若你的网络插件需在容器里安装某些包或配置才能完成的话,是不可取的:Infra容器镜像的rootfs里几乎啥都没,没你随意发挥的空间。这也意味着你的网络插件完全不必关心用户容器的启动与否,而只需关注如何配置Pod,即Infra容器的Network Namespace。

有了该设计,共享Volume就简单了:Kubernetes只要把所有Volume的定义都设计在Pod层级。

这样,一个Volume对应的宿主机目录对Pod就只有一个,Pod里的容器只要声明挂载该Volume,就一定能共享这个Volume对应的宿主机目录。如下案例:

apiVersion: v1
kind: Pod
metadata:
  name: two-containers
spec:
  restartPolicy: Never
  volumes:
  - name: shared-data
    hostPath:      
      path: /data
  containers:
  - name: nginx-container
    image: nginx
    volumeMounts:
    - name: shared-data
      mountPath: /usr/share/nginx/html
  - name: debian-container
    image: debian
    volumeMounts:
    - name: shared-data
      mountPath: /pod-data
    command: ["/bin/sh"]
    args: ["-c", "echo Hello from the debian container > /pod-data/index.html"]

debian-container和nginx-container都声明挂载了shared-data这个Volume。而shared-data是hostPath类型。所以,它对应在宿主机上的目录就是:/data。该目录就被同时绑定挂载进上述两个容器。

这就是为何nginx-container可从它的/usr/share/nginx/html目录中,读取到debian-container生成的index.html文件。

3 容器设计模式

Pod这种“超亲密关系”容器的设计思想,就是希望,当用户想在一个容器里跑多个功能不相关的应用时,应优先考虑它们是不是更应被描述成一个Pod里的多个容器。

为掌握这种思考方式,应尽量尝试使用它来描述一些用单容器难解决的问题。

3.1 WAR包与Web服务器

现有一Java Web应用的WAR包,需放在Tomcat的webapps目录下运行起来。假如现在只能用Docker,如何处理该组合关系?

  • 把WAR包直接放在Tomcat镜像的webapps目录,做成一个新镜像运行。可这时,若你要更新WAR包内容或升级Tomcat镜像,就要重新制作一个新的发布镜像,麻烦!
  • 不管WAR包,永远只发布一个Tomcat容器。但该容器的webapps目录,须声明一个hostPath类型的Volume,从而把宿主机上的WAR包挂载进Tomcat容器当中运行起来。但这样就须解决:如何让每台宿主机,都预先准备好这个存储有WAR包的目录?看来,你只能独立维护一套分布式存储系统。

有Pod之后,这样的问题很容易解决。把WAR包和Tomcat分别做成镜像,然后把它们作为一个Pod里的两个容器“组合”。该Pod的配置文件:

apiVersion: v1
kind: Pod
metadata:
  name: javaweb-2
spec:
  initContainers:
  - image: javaedge/sample:v2
    name: war
    command: ["cp", "/sample.war", "/app"]
    volumeMounts:
    - mountPath: /app
      name: app-volume
  containers:
  - image: javaedge/tomcat:7.0
    name: tomcat
    command: ["sh","-c","/root/apache-tomcat-7.0.42-v2/bin/start.sh"]
    volumeMounts:
    - mountPath: /root/apache-tomcat-7.0.42-v2/webapps
      name: app-volume
    ports:
    - containerPort: 8080
      hostPort: 8001 
  volumes:
  - name: app-volume
    emptyDir: {}

该Pod定义两个容器,第一个容器使用的镜像是javaedge/sample:v2,这个镜像里只有一个WAR包(sample.war)放在根目录下。而第二个容器则使用的是一个标准的Tomcat镜像。

WAR包容器的类型不再是个普通容器,而是个Init Container类型。

Pod中所有Init Container定义的容器,都会比spec.containers定义的用户容器先启动。且Init Container容器会按序逐一启动,直到它们都启动并且退出,用户容器才启动。

所以,该Init Container类型的WAR包容器启动后,执行"cp /sample.war /app",把应用的WAR包拷贝到/app目录,然后退出。

而后该/app目录,就挂载了一个名叫app-volume的Volume。

Tomcat容器同样声明了挂载app-volume到自己的webapps目录下。所以,等Tomcat容器启动,其webapps目录下就一定会存在sample.war文件:这文件正是WAR包容器启动时拷贝到这Volume里的,而这个Volume被这两个容器共享。

像这就用“组合”,解决了WAR包与Tomcat容器的耦合问题。这所谓的“组合”操作,正是容器设计模式里最常用的一种模式:sidecar。即可以在一个Pod中,启动一个辅助容器,来完成一些独立于主进程(主容器)之外的工作。

如在我们的这个应用Pod中,Tomcat容器是主容器,而WAR包容器的存在,只是给它提供一个WAR包。所以,用Init Container的方式优先运行WAR包容器,扮演sidecar角色。

3.2 容器的日志收集

现有一应用,需不断将日志文件输出到容器的/var/log目录。就能把一个Pod里的Volume挂载到应用容器的/var/log目录。

然后,在该Pod里同时运行一个sidecar容器,它也声明挂载同一个Volume到自己的/var/log目录。

接下来,sidecar容器就只需不断从自己的/var/log目录读取日志文件,转发到MongoDB或ES中存储起来。这样,一个最基本的日志收集工作完成了。

该例中的sidecar的主要也是使用共享的Volume完成对文件的操作。

Pod另一重要特性:它的所有容器都共享同一Network Namespace。这使得很多与Pod网络相关的配置和管理,也都能交给sidecar,而完全无须干涉用户容器。最典型的莫过Istio。

Kubernetes社区把“容器设计模式”理论理成的论文

3 总结

仍很多人把容器跟虚拟机相比,把容器当做性能更好的VM,讨论如何把应用从VM无缝迁移到容器。

但无论是从实现原理还是使用方法、特性、功能等方面,容器与VM几乎无任何相似。也不存在一种普遍的方法,能够把虚拟机里的应用无缝迁移到容器中。因为,容器的性能优势,必伴随缺陷,即它不能像VM,完全模拟本地物理机环境中的部署方法。所以,“上云”最终还是要深入理解容器本质,即进程。

一个运行在VM里的应用,都被管理在systemd或supervisord下的一组进程,而非一个进程。这跟本地物理机上应用的运行方式一样。这也是为何,从物理机到虚拟机之间的应用迁移不难。

可一个容器永远只能管理一个进程,一个容器就是一个进程。所以,将一个原运行在虚拟机的应用,“无缝迁移”到容器,和容器的本质相悖。

所以Swarm无法成长:一旦到生产环境,Swarm这种单容器工作方式,难以描述真实世界的应用架构。所以,你可理解Pod本质:扮演传统基础设施里“VM”的角色;而容器,则是该VM里运行的用户程序。

所以下一次,当你需要把一个运行在VM的应用迁移到Docker容器,仔细分析到底有哪些进程(组件)运行在这VM里。

然后,你就能把整个VM想象成为一个Pod,把这些进程分别做成容器镜像,把有顺序关系的容器,定义为Init Container。这才是更合理的、松耦合的容器编排,也是从传统应用架构,到“微服务架构”最自然的过渡。

Pod提供的是一种编排思想,而非具体技术方案。若愿意,完全可使用VM作为Pod实现,然后把用户容器都运行在该VM。如Mirantis公司的virtlet项目。甚至,你能实现一个带Init进程的容器项目,模拟传统应用的运行方式。

相反的,若强行把整个应用塞到一个容器,甚至不惜使用Docker In Docker,则后患无穷。

原文地址:https://cloud.tencent.com/developer/article/2135143

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


文章浏览阅读942次。kube-controller-manager 和 kubelet 是异步工作的,这意味着延迟可能包括任何的网络延迟、apiserver 的延迟、etcd 延迟,一个节点上的负载引起的延迟等等。当 Kubernetes 中 Node 节点出现状态异常的情况下,节点上的 Pod 会被重新调度到其他节点上去,但是有的时候我们会发现节点 Down 掉以后,Pod 并不会立即触发重新调度,这实际上就是和 Kubelet 的状态更新机制密切相关的,Kubernetes 提供了一些参数配置来触发重新调度的时间。_node-monitor-period
文章浏览阅读3.8k次。上篇文章详细介绍了弹性云混部的落地历程,弹性云是滴滴内部提供给网约车等核心服务的容器平台,其基于 k8s 实现了对海量 node 的管理和 pod 的调度。本文重点介绍弹性云的调度能力,分为以下部分:调度链路图:介绍当前弹性云调度体系链路,对架构体系有一个初步的认知k8s 调度能力的运用:整体介绍弹性云现在用到的 k8s 调度能力和对其的增强k8s 版本的升级:介绍到从 k8s 1.12 到 1...._滴滴机房 腾讯
文章浏览阅读897次。对于cpu来说,这种分配方式并不会有太大问题,因为cpu可以灵活调度,numa调度时我们只计算绑定了numa cpu的pod是可以接受的,但是对于内存来说,numa node上申请了的内存无法做到随时迁移,这就会导致调度器视角numa node的mem资源足够,但是等到pod真正使用时,由于没有绑定numa node的pod申请的内存,导致numa node的mem资源不足,造成swap中断或者远端内存申请,这会对绑定mem的pod来带来性能损耗。忽略了没有绑定numa node的pod资源。_kubectl numa
文章浏览阅读796次,点赞17次,收藏15次。只要在Service定义中设置了ClusterIp:None,就定义了一个HeadLess Service, 它与普通的Service关键区别在于它没有ClusterIp地址,如果解析HeadLess Service的DNS域名,则会返回该Service对应的全部Pod的EndPoint列表,这就意味着客户端是直接与后端的pod建立了TCP/IP链接进行通信的。一个Label是一个键值对。注解:属于资源对象的元数据,可以被理解为一种特殊的标签,不过更多的是与程序挂钩,通常用于实现资源对象属性的自定义扩展。
文章浏览阅读763次。但是此时如果配置成 NONE, 租户创建成功了,但是无法创建资源文件,也就是无法上传文件,可能 dolphinscheduler 团队就想着将文件上传到 hdfs,暂不支持本地。需要将 resource.storage.type 置为 NONE, 因为我之前用的 1.3.6 版本的时候,即使资源文件存在本地文件也需要配置成 hdfs。_[error] 2023-10-24 18:10:43.762 +0800 org.apache.dolphinscheduler.api.servic
文章浏览阅读2.7k次,点赞2次,收藏13次。公司使用的是交老的k8s版本(1.16),由于老版本的K8s对于现在很多新特性不支持,所以需要升级到新版本。目前2023年7月11日最新版本的k8s是v1.27.3。通过参考官方文档进行k8s部署工作。其中涉及到操作系统配置、防火墙配置、私有镜像仓库等。_k8s最新版本
文章浏览阅读1.8w次,点赞14次,收藏27次。能节省你在kubeadm init 时遇到问题的排错时间⌚️。整合了网上大佬
文章浏览阅读1.1k次,点赞2次,收藏7次。具体操作步骤可以参考之前的教程,建议是先安装一台,然后克隆虚拟机,这样速度快。注意:在克隆时记得修改Mac地址、IP地址、UUID和主机名。(最后别忘了保存下快照~)_部署k8s集群
文章浏览阅读863次,点赞23次,收藏16次。当部署完 Kubernetes,便拥有了一个完整的集群。一组工作机器,称为节点, 会运行容器化应用程序。每个集群至少有一个工作节点。工作节点会 托管Pod ,而 Pod 就是作为应用负载的组件。控制平面管理集群中的工作节点和Pod。说人话版本:集群:cluster,多个几点被组织到一起共同为系统提供服务过程称之为集群。本质上是将承载同一个软件服务节点组织到一起,称之为该软件(服务)的集群,当然集群中的节点身份地位是不一样的。k8s集群也是如此,他也是多个节点组成。
文章浏览阅读943次。Rancher是一个开源的企业级多集群Kubernetes管理平台,实现了Kubernetes集群在混合云+本地数据中心的集中部署与管理,以确保集群的安全性,加速企业数字化转型。Rancher 1.0版本在2016年就已发布,时至今日,Rancher已经成长为企业在生产环境中运行容器和Kubernetes的首要选择。_rancher管理k8s
文章浏览阅读742次,点赞2次,收藏3次。本篇来讲解如何在centos下安装部署高可用k8s集群。_kubeadm ha keepalived + nginx
文章浏览阅读1.9k次,点赞21次,收藏25次。那么这个空间设置成内存的2倍大小。点击IPv4设置--手动--添加--设置ip--设置DNS服务器,最后点击--“保存”;首先选中--“本地标准磁盘”,存储配置--自定义分区,点击--“完成”;在--主机名--设置主机名:(例如k8s-master01),点击--点击+,设置--挂载点/boot--期望容量,点击--添加挂载点;点击--+--挂载点swap--期望容量,点击--“添加挂载点”;默认选择--亚洲--上海,并调整日期和时间,点击--“完成”;设备类型--确认--LVM,卷组--选择“修改”;_euler 服务器搭建
文章浏览阅读1k次。在1.25版本的k8s集群中部署gpu-manage时,虽然显示gpu节点上gpu-manage的pod实例都是running状态,但是给pod申领。既可以用源码的Makefile自动编译打包成新的镜像,但是源码的。说明gpu-manager和容器运行时接口通信失败了。编译后的镜像在1.25版本的k8s中可以正常使用。,但是在k8s1.23版本之后,接口路径已经改为。资源时,却始终找不到有资源的节点。,另外有一些依赖需要国际上的支持。可以看到这里用的运行时接口是。查看节点的详情时,返回的。_launch gpu manager 报错 can't create container runtime manager: context dead
文章浏览阅读1k次,点赞18次,收藏16次。SelfLink:API的资源对象之一,表示资源对象在集群当中自身的一个连结,self-Link是一个唯一的标识号,可以用于标识k8s集群当中的每个资源的对象。容器里使用的配置,在provisioner当中定义好环境变量,传给容器,storageclass的名称,NFS服务器的地址,NFS的目录。NFS的provisionner的客户端以pod的方式运行在集群当中,监听k8s集群当中PV的请求,然后动态的创建于NFS相关的PV。命名为 nfs-client-provisioner-clusterrole。
文章浏览阅读6.3k次,点赞2次,收藏20次。k8s证书过期解决方案之替换证书_k8s证书过期如何更换
文章浏览阅读1k次。KMS,Key Management Service,即密钥管理服务,在K8S集群中,以驱动和插件的形式启用对Secret,Configmap进行加密。以保护敏感数据
文章浏览阅读888次。exporter对于云服务的监控还是很不完美,毕竟每家都有自己的护城河。自动发现多实例这样的借助consul 阿波罗这样的会简单一些。aws可以借助cloudwatch这样的导入模板到grafana中。还是希望能将类似腾讯云云监控中的这些指标采集到prometheus中,但是这过程应该还很遥远grafana出图 prometheus查询语法这些东西有时间的好好研究一下。报警有必要进行分级别,收敛配置一下!_command: - "-redis.password-file=/redis_passwd.json
文章浏览阅读1k次。可以在此处(https://cloud.google.com/kubernetes-engine/docs/how-to/kube-dns)和此处(https://www.digitalocean.com/community/tutorials/an-introduction-to-the-kubernetes-dns-service)找到更多的详细信息。-or-ipvs/)和此处(https://arthurchiao.art/blog/cracking-k8s-node-proxy/)。_k8s默认命名空间
文章浏览阅读4.9k次,点赞11次,收藏32次。如果运行runc命令时提示:runc: error while loading shared libraries: libseccomp.so.2: cannot open shared object file: No such file or directory,则表明runc没有找到libseccomp,需要检查libseccomp是否安装,本次安装默认就可以查询到。所有主机均需要操作。所有主机均需要操作。所有主机均需要操作。所有主机均需要操作。所有主机均需要操作。所有主机均需要操作。_kubernetes 1.28
文章浏览阅读3.6w次,点赞118次,收藏144次。Canal 提供了网络功能,使得 Kubernetes 集群中的 Pod 可以相互通信,并与集群外部的服务进行通信。它通过网络插件的方式,为每个 Pod 分配唯一的 IP 地址,并管理网络流量的路由和转发。此外,Canal 还支持网络策略,用于定义 Pod 之间的通信规则和安全策略。Canal 基于 Calico 和 Flannel 项目,结合了二者的优点。它使用 Calico 的数据平面,提供高性能的网络转发和安全特性,同时使用 Flannel 的控制平面,实现 IP 地址管理和网络策略的配置。_k8s canal