JVM内存区域

包含:

  • 程序计数器
  • 虚拟机栈
  • 本地方法栈
  • 方法区(包含运行时常量池)
  • 直接内存

线程私有:程序计数器,虚拟机栈,本地方法栈
线程共享:堆,方法区

程序计数器

程序计数器是一块较小的内存空间,可以看作是当前线程执行的字节码行号指示器,JVM 通过改变这个计数器的值,来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能。
程序计数器空间是私有的,原因在于 Java 虚拟机是通过线程轮流切换并分配处理器时间来实现的多线程,为了线程切换后能恢复到正确的执行位置,每个线程都需要一个独立的程序计数器。
如果线程正在执行 Java 方法,则程序计数器记录的是虚拟机字节码指令地址
如果线程正在执行 Native 方法,则程序计数器值为空(Undefined)
程序计数器是唯一一个在 Java 虚拟机规范中不会发生 OutOfMemoryError 的区域。

简单说就是控制线程执行、切换的计数指示器。

虚拟机栈

每个方法在执行时都会创建一个栈帧(Stack Frame),用于存储局部变量表、操作数栈、动态链接、方法出口等信息。方法运行从开始到结束,对应的是栈帧在虚拟机栈中入栈及出栈的过程。以下着重介绍局部变量表。

局部变量表存放以下类型的变量,其中 64 位长度的 long 和 double 类型数据会占用 2 个局部变量空间(Slot),其余数据类型只占据 1 个。

编译期已知的各种基本数据类型:boolean、byte、char、short、int、float、long、double
对象引用:reference 类型,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置
returnAddress 类型:指向字节码指令地址
局部变量表所需的内促农建在编译期间完成分配,在方法运行期间不会更改局部变量表的大小。

在 Java 虚拟机规范中,对这个区域规定了两种异常情况:

StackOverflowError: 线程请求的栈深度大于虚拟机所允许的深度
OutOfMemoryError: 虚拟机栈进行动态扩展时无法申请到足够的内存

下面用一段简单的代码说明操作栈与局部变量表的交互


详细的字节码操作顺序如下:

简单说就是方法的局部变量和操做入栈和出栈的栈空间。

本地方法栈

虚拟机栈是为虚拟机执行Java方法(也就是字节码)服务,本地方法区则为虚拟机使用到的Native方法服务.

虚拟机栈“主内”,而本地方法栈“主外”
这个“内外”是针对JVM来说的,本地方法栈为Native方法服务。线程开始调用本地方法时,会进入一个不再受JVM约束的世界,本地方法可以通过JNI(Java Native Interface)来访问虚拟机运行时的数据区,甚至可以调用寄存器,具有和JVM相同的能力和权限,当大量本地方法出现时,势必会削弱JVM对系统的控制力,因为它的出错信息都比较黑盒.
对于内存不足的情况,本地方法栈还是会拋出native heap OutOfMemory、以及 StackOverflowError 和 OutOfMemoryError

最著名的本地方法应该是System.currentTimeMillis()

Java 堆(Heap)

虚拟机所管理的内存中最大的一块区域,被所有线程共享。堆存在的唯一意义是存放对象实例,在 Java 虚拟机规范中的表述是“所有的对象和数组都要在堆上分配”。但是随着 JIT 编译器的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致这一规则不再那么绝对。GC 就是对堆上的对象进行回收。堆区域空间不足会导致 OOM。
堆的内存空间既可以固定大小,也可运行时动态地调整,通过如下参数设定初始值和最大值,比如

-Xms256M. -Xmx1024M
  • -X表示它是JVM运行参数
  • ms是memorystart的简称 最小堆容量
  • mx是memory max的简称 最大堆容量

但是在通常情况下,服务器在运行过程中,堆空间不断地扩容与回缩,势必形成不必要的系统压力,所以在线上生产环境中,JVM的Xms和Xmx设置成一样大小,避免在GC后调整堆大小时带来的额外压力。

堆分成两大块:新生代和老年代
对象产生之初在新生代,步入暮年时进入老年代,但是老年代也接纳在新生代无法容纳的超大对象

新生代= 1个Eden区+ 2个Survivor区
绝大部分对象在Eden区生成,当Eden区装填满的时候,会触发Young GC。垃圾回收的时候,在Eden区实现清除策略,没有被引用的对象则直接回收。依然存活的对象会被移送到Survivor区,这个区真是名副其实的存在。Survivor 区分为S0和S1两块内存空间,送到哪块空间呢?每次Young GC的时候,将存活的对象复制到未使用的那块空间,然后将当前正在使用的空间完全清除,交换两块空间的使用状态。如果YGC要移送的对象大于Survivor区容量上限,则直接移交给老年代。假如一些没有进取心的对象以为可以一直在新生代的Survivor区交换来交换去,那就错了。每个对象都有一个计数器,每次YGC都会加1。

-XX:MaxTenuringThreshold 

参数能配置计数器的值到达某个阈值的时候,对象从新生代晋升至老年代。如果该参数配置为1,那么从新生代的Eden区直接移至老年代。默认值是15,可以在Survivor 区交换14次之后,晋升至老年代。若Survivor区无法放下,或者超大对象的阈值超过上限,则尝试在老年代中进行分配;如果老年代也无法放下,则会触发Full Garbage Collection(Full GC);
如果依然无法放下,则抛OOM.

堆出现OOM的概率是所有内存耗尽异常中最高的。出错时的堆内信息对解决问题非常有帮助,所以给JVM设置运行参数-

XX:+HeapDumpOnOutOfMemoryError

让JVM遇到OOM异常时能输出堆内信息。

方法区(Method Area)

存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。别名 Non-Heap。HotSpot 虚拟机设计团队选择把 GC 分代收集扩展至方法区,导致也有人称呼方法区为“永久代”(Permanent Generation),但这并不是一个好的实践,会导致内存溢出问题,而且极少数的方法会因为这个原因而在不同虚拟机上产生不同表现。

垃圾收集行为在方法区是较少出现的,而且回收率不高,回收目标主要是针对常量池的回收和对类型的卸载。

  • 线程共享
    方法区是堆的一个逻辑部分,因此和堆一样,都是线程共享的.整个虚拟机中只有一个方法区.
  • 永久代
    方法区中的信息一般需要长期存在,而且它又是堆的逻辑分区,因此用堆的划分方法,我们把方法区称为永久代.
  • 内存回收效率低
    Java虚拟机规范对方法区的要求比较宽松,可以不实现垃圾收集.
    方法区中的信息一般需要长期存在,回收一遍内存之后可能只有少量信息无效.
    对方法区的内存回收的主要目标是:对常量池的回收和对类型的卸载

和堆一样,允许固定大小,也允许可扩展的大小,还允许不实现垃圾回收。

当方法区内存空间无法满足内存分配需求时,将抛出OutOfMemoryError异常.

对每个加载的类型(类class、接口interface、枚举enum、注解annotation),JVM必须在方法区中存储以下类型信息:

  • 类型的完整有效名称(全名=包名.类名)
  • 类型直接父类的完整有效名称( java.lang.Object除外,其他类型若没有声明父类,默认父类是Object)
  • 类型的修饰符(public、abstract、final的某个子集)
  • 类型直接接口的一个有序列表
  • 类型的常量池( constant pool)
  • 域(Field)信息
  • 方法(Method)信息
  • 除了常量外的所有静态(static)变量

运行时常量池(Runtime Constant Pool) 是方法区的一部分,Class 文件除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期间生成的各种字面量和符号引用。可能会抛出 OOM 异常。

直接内存(Direct Memory)

直接内存不是 JVM 运行时数据区的一部分,JDK 1.4 中新加入了 NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的 I/O 方式,可以使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆的 DirectByteBuffer 对象作为这块内存的引用进行操作。从而避免在 Java 堆和 Native 堆中来回复制护具,在一些场景中显著提高性能。使用不当会有 OOM 异常。

  • 由于在 JDK 1.4 中引入了 NIO 机制,为此实现了一种通过 native 函数直接分配对外内存的,而这一切是通过以下两个概念实现的:
    • 通道(Channel);
    • 缓冲区(Buffer);
  • 通过存储在 Java 堆里面的 DirectByteBuffer 对象对这块内存的引用进行操作;
  • 因避免了 Java 堆和 Native 堆(native heap)中来回复制数据,所以在一些场景中显著提高了性能;
  • 直接内存出现 OutOfMemoryError 异常的原因是物理机器的内存是受限的,但是我们通常会忘记需要为直接内存在物理机中预留相关内存空间;

直接内存的最大大小可以通过 -XX:MaxDirectMemorySize 来设置,默认是 64M。

 在 Java 中分配内存的方式一般是通过 sun.misc.Unsafe类的公共 native 方法实现的(比如 文件以及网络 IO 类,但是非常不建议开发者使用,使用时一定要确保安全),而类 DirectByteBuffer 类的也是借助于此向物理内存(比如 JVM 运行于 Linux 上,那么 Linux 的内存就被称为物理内存)。

 Unsafe 是位于 sun.misc 包下的一个类,主要提供一些用于执行低级别、不安全操作的方法,如直接访问系统内存资源、自主管理内存资源等,这些方法在提升 Java 运行效率、增强 Java 语言底层资源操作能力方面起到了很大的作用。但由于 Unsafe 类使 Java 语言拥有了类似 C 语言指针一样操作内存空间的能力,这无疑也增加了程序发生相关指针问题的风险。在程序中过度、不正确使用 Unsafe 类会使得程序出错的概率变大,使得 Java 这种安全的语言变得不再“安全”,因此对 Unsafe 的使用一定要慎重。

原文地址:https://www.cnblogs.com/starcrm/p/13210599.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


jinfo 命令可以用来查看 Java 进程运行的 JVM 参数,命令如下:[root@admin ~]# jinfo --helpUsage: jinfo [option] <pid> (to connect to running process) jinfo [option] <executable <core> (to connect to a core file) jinfo [option] [serve
原文链接:https://www.cnblogs.com/niejunlei/p/5987611.htmlJava Virtual Machine Stacks,线程私有,生命周期与线程相同,描述的是Java方法执行的内存模型:每一个方法执行的同时都会创建一个栈帧(Stack Frame),由于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法的执行就对应着栈帧在虚拟机栈中的入栈,出栈...
java 语言, 开发者不能直接控制程序运行内存, 对象的创建都是由类加载器一步步解析, 执行与生成与内存区域中的; 并且jvm有自己的垃圾回收器对内存区域管理, 回收; 但是我们已经可以通过一些工具来在程序运行时查看对应的jvm内存使用情况, 帮助更好的分析与优化我们的代码;jps查看系统中有哪些java进程jps 命令类似与 linux 的 ps 命令,但是它只列出系统中所有的 Java 应用程序。 通过 jps 命令可以方便地查看 Java 进程的启动类、传入参数和 Java 虚拟机参数等信息
1.jvm的简单抽象模型:  2.类加载机制     双亲委派模型是为了防止jdk核心类库被篡改,如果需要打破可以重写Classloader.loadClass方法。r 双亲委派模型:一个类加载器收到一个类的加载请求,他会先判断自身是否已存在该类,如果不存在上抛给上一级类加载器ClassLoad
堆外内存JVM启动时分配的内存,称为堆内存,与之相对的,在代码中还可以使用堆外内存,比如Netty,广泛使用了堆外内存,但是这部分的内存并不归JVM管理,GC算法并不会对它们进行回收,所以在使用堆外内存时,要格外小心,防止内存一直得不到释放,造成线上故障。堆外内存的申请和释放JDK的ByteBuffe
1.springboot和tomcat2.springcloud的请求如何通过网关鉴权?3.springmvc启动时组件的加载顺序?4.mybatis如何同时更新三条记录5.hibernate实现级联更新6.一个web程序应用程序启动时的加载流程7.如何向www.baidu.com地址发出请求时,并获取相应?8.???9.谈谈你对tcp/iptelnetudp协
堆设置-Xms256M:初始堆大小256M,默认为物理内存的1/64-Xmx1024M:最大堆大小1024M,默认为物理内存的1/4,等于与-XX:MaxHeapSize=64M-Xmn64M:年轻代大小为64M(JDK1.4后支持),相当于同时设置NewSize和MaxNewSize为64M-XX:NewSize=64M:初始年轻代大小-XX:MaxNewSize=256M:最大年轻代大小(默认
一.概述收集算法(JVM之垃圾回收-垃圾收集算法)是内存回收的抽象策略,垃圾收集器就是内存回收的具体实现。JVM规范对于垃圾收集器的应该如何实现没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器差别较大,这里只看HotSpot虚拟机。就像没有最好的算法一样,垃圾收集器
Java中的堆是JVM所管理的最大的一块内存空间,主要用于存放各种类的实例对象,如下图所示: 在Java中,堆被划分成两个不同的区域:新生代(Young)、老年代(Old)。新生代(Young)又被划分为三个区域:Eden、S0、S1。 这样划分的目的是为了使JVM能够更好的管理堆内存中的对象,包
JVM深入理解JVM(4)——如何优化JavaGC「译」 PostedbyCrowonAugust21,2017本文翻译自SangminLee发表在Cubrid上的”BecomeaJavaGCExpert”系列文章的第三篇《HowtoTuneJavaGarbageCollection》,本文的作者是韩国人,写在JDK1.8发布之前,虽然有些地
 JVM深入理解JVM(2)——GC算法与内存分配策略 PostedbyCrowonAugust10,2017说起垃圾收集(GarbageCollection,GC),想必大家都不陌生,它是JVM实现里非常重要的一环,JVM成熟的内存动态分配与回收技术使Java(当然还有其他运行在JVM上的语言,如Scala等)程序员在提升开
运行时数据区  线程独有本地方法栈、虚拟机栈、程序计数器这些与线程对应的数据区会随着线程开始和结束创建和销毁  整体公有元数据区(又称方法区)、堆区会随着虚拟机启动而创建,随着虚拟机退出而销毁 
java整个堆大小设置:Xmx和Xms设置为老年代存活对象的3-4倍,即FullGC之后的老年代内存占用的3-4倍。永久代PermSize和MaxPermSize设置为老年代存活对象的1.2-1.5倍年轻代Xmx的设置为老年代存活对象的1-1.5倍老年代的内存大小设置为老年代存活对象的2-3倍BTW: Sun官方建议年轻代
栈顶缓存(Top-of-StackCashing)技术基于栈式架构得虚拟机所使用的零地址指令更加紧凑,但完成一项操作的时候必然使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派次数和内存读写次数 由于操作数是存储在内存重的,因此频繁地执行内存读/写操作必然影响速度。 综上
自用。同样的代码在不同的平台生成的机器码是不一样的,为什么java代码生成的字节码文件,能在不同的平台运行?因为不同版本的jdk里面的虚拟机会屏蔽不同操作系统在底层硬件与指令上的区别。栈:线程栈,局部变量存放栈内存区域。线程(分配一个栈)运行分配栈将局部变量放入内存。怎么放:栈
jconsole监控:1.java启动命令加上参数java-Djava.rmi.server.hostname=172.16.17.247-Dcom.sun.management.jmxremote-Dcom.sun.management.jmxremote.port=2099-Dcom.sun.management.jmxremote.authenticate=false-Dcom.sun.management.jmxremote.ssl=false -XX:+Unlock
类加载器分类publicclassStackStruTest{publicstaticvoidmain(String[]args){//对用户自定义个类来说:默认使用系统类加载器进行加载-----AppClassLoaderClassLoaderclassLoader=StackStruTest.class.getClassLoader();System.out.p
堆体系结构一个JVM实例只存在一个堆内存,堆内存的大小是可调节的。类加载器读取类文件后,需要把类、方法、常量、变量放在堆内存中,保存所有引用类型的真实信息,以方便执行器指向,堆内存分为三个部分:年轻代、老年代、永久代。Java7之前,堆内存在逻辑上分为:年轻代、老年代、永久代。物
JVM深入理解JVM(5)——虚拟机类加载机制 PostedbyCrowonAugust21,2017在Class文件中描述的各种信息,最终都需要加载到虚拟机中之后才能运行和使用。而虚拟机中,而虚拟机如何加载这些Class文件?Class文件中的信息进入到虚拟机中会发生什么变化?本文将逐步解答这
保存(持久化)对象及其状态到内存或者磁盘Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比JVM的生命周期更长。但在现实应用中,就可能要求在JVM停止运行之后能够保存(持久化)指定的对象,并在