Java设计模式学习记录-解释器模式 Java设计模式学习记录-GoF设计模式概述

前言

这次介绍另一个行为模式,解释器模式,都说解释器模式用的少,其实只是我们在日常的开发中用的少,但是一些开源框架中还是能见到它的影子,例如:spring的spEL表达式在解析时就用到了解释器模式,以及mybatis在将SQL语句映射成对象时关系时、还有一些解析正则表达式和解析json等开源工具。

解释器模式

概念介绍

解释器模式是指给定一个使用规定格式和语法的语言,并且建立一个解释器来解释该语言中的句子。解释器本身就是一种按照规定的语法进行解析的方案,但是总体来说也是一种使用频率相对较低但学习难度较大的设计模式。

举例

因为解释器模式用到地方不太多,实在想不到举什么样的例子合适,所以就使用一个简单的来实现一个垒加的功能的例子吧。

具体过程如下:

上下文环境类

@Getter
@Setter
public class Context {
    
    /**
     * 输入
     */
    private String input;
    
     * 结果
     private int output;


    public Context(String input){
        this.input = input;
    }

    @Override
     String toString() {
        return input + "=" + output;
    }
}

抽象表达式类

abstract  Expression {

    Context context;

    
     * 解释一个给定的表达式
     * @param context
     void interpret(Context context);

}

垒加类


 * 垒加1
 */
class MinusExpression extends Expression {

    
     * 解释一个给定的表达式
     *
     * */
    @Override
     interpret(Context context) {

        this.context = context;
        String input = context.getInput();
        int in = Integer.valueOf(input);
        context.setOutput(in-1);

    }

    @Override
    return "--"+context.getInput()+"="+context.getOutput();
    }
}

垒减


 * 垒减
 class PlusExpression  Integer.valueOf(input);
        context.setOutput(in+1return "++"+context.getInput()+"="+context.getOutput();
    }
}

测试,使用

 Client {

    static  main(String[] args) {

        Context context = new Context("50");
        
        Expression plus = new PlusExpression();
        Expression minus =  MinusExpression();
        //执行垒加
        plus.interpret(context);
        System.out.println(plus.toString());
        垒减
        minus.interpret(context);
        System.out.println(minus.toString());

    }

}

运行结果

++50=51
--50=49

通过运算结果可以看出来,表达式通过解释后的结果,++50解释后结果是51,--50解释后结果是49。

解释器模式分析

解释器模式的结构图如下:

 

解释器类图上的各个角色说明:

Expression(抽象解释器):定义解释方法,具体的解释任务由各个实现类完成,具体的解释器分别由TerminalRxpression和NonterMinalExpression完成。抽象解释器对应上面例子中的Expression类

TerminalExpression(终结符表达式):实现与文法中的元素相关的解释操作,一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。上面的代码例子中的PlusExpression和MinusExpression都是这个角色。

NoteTerminalExpression(非终结符表达式):文法中的每条规则对应于一个非终结符表达式。非终结符表达式是根据逻辑的复杂度而增加,原则上每个文法规则都对应一个非终结符表达式。由于上面举得例子比较简单,所以上面的例子中是没有这个角色的。

Context(环境角色):环境类又称为上下文类,它用于存储解释器之外的一些全局信息,通常它临时存储了需要解释的语句。也可以使用集合用来存储要解释的内容。

解释器模式总结

解释器模式的优点

1、易于改变和扩展文法。因为该模式使用类表示文法,所以可以使用继承改变或扩展该文法。

2、每条文法规则都可以是一个类,所以可以很方便的实现一个简单的语言。

3、易于实现文法的定义。在抽象语法树中每一个表达式节点类的实现方式都是相似的,这些类的代码编写都不会特别复杂,还可以通过一些工具自动生成节点类代码。

4、增加新的解释表达式较为方便。如果用户需要增加新的解释表达式只需要对应增加一个新的终结符表达式或非终结符表达式类,原有表达式类代码无须修改,符合“开闭原则”。

解释器模式的缺点

1、对于复杂文法难以维护。在解释器模式中,每一条规则至少需要定义一个类,因此如果一个语言包含太多文法规则,类的个数将会急剧增加,导致系统难以管理和维护,此时可以考虑使用语法分析程序等方式来取代解释器模式。

2、执行效率较低。由于在解释器模式中使用了大量的循环和递归调用,因此在解释较为复杂的句子时其速度很慢,而且代码的调试过程也比较麻烦。

适用场景

1、可以将一个需要解释执行的语言中的句子表示为一个抽象语法树。

2、一些重复出现的问题可以用一种简单的语言来进行表达。

3、一个语言的文法较为简单。

4、执行效率不是关键问题。【注:高效的解释器通常不是通过直接解释抽象语法树来实现的,而是需要将它们转换成其他形式,使用解释器模式的执行效率并不高。】

 

 

 

 

 

 

 

想了解更多的设计模式请查看Java设计模式学习记录-GoF设计模式概述

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结