如何解决神经网络中的溢出|蟒蛇
我已经建立了神经元网络,但出现了溢出错误,我该如何解决? 这是一个神经网络,我们为其提供固定值,并学会在两个输出中返回0和1。 在这种情况下,它具有4层,一个输入层具有2个神经元,两个隐藏层具有5个神经元,而输出层则具有两个神经元。拓扑列表给出的形状
import numpy as np
class Layer:
activation_func = None
bias = None
weights = None
def __init__(self,inputs,neurons,activation_func):
self.activation_func = activation_func
self.weights = np.random.rand(neurons,inputs) * 2 - 1
self.bias = np.random.rand(1,neurons) * 2 - 1
class Net:
layers = []
activation_func = None
activation_func_derivate = None
output = []
adds = []
inputs = []
def __init__(self,topology,activation_func,activation_func_derivate):
#intputs: inputs number by neuron in the input layer
#topology: each element it's the neurons number of each layer. Topology lenght it's the layers number
self.activation_func = activation_func
self.activation_func_derivate = activation_func_derivate
layers = []
for i in range(len(topology)):
if i == 0:
layers.append(Layer(inputs,topology[i],self.activation_func))
else:
layers.append(Layer(topology[i - 1],self.activation_func))
self.layers = layers
def forward(self,inputs):
output = []
adds = []
self.inputs = inputs
for i,l in enumerate(self.layers):
if i == 0:
output_aux = [[]]
adds_aux = [[]]
for j,x in enumerate(self.inputs):
z = l.weights[j]@x.T + l.bias[0][j]
adds_aux[0].append(z[0])
act = self.activation_func(z[0])
output_aux[0].append(act)
output.append(np.array(output_aux))
adds.append(np.array(adds_aux))
else:
z = output[i - 1]@l.weights.T + l.bias
adds.append(z)
act = self.activation_func(z)
output.append(act)
self.output = output
self.adds = adds
return output[len(output) - 1]
def backpropagation(self,output_expected,cost_func_derivate,ratio = 0.8):
deltas = []
w_derivates = []
b_derivates = []
for i in range(len(self.output) - 1,- 1,-1):
if i == len(self.output) - 1:
delta = cost_func_derivate(self.output[i],output_expected)*self.activation_func_derivate(self.output[i])
w_der = self.output[i - 1].T@delta
else:
act_func_der = self.activation_func_derivate(self.adds[i])
delta = (deltas[0]@self.layers[i + 1].weights)*act_func_der
w_der = self.output[i - 1].T@delta
deltas.insert(0,delta)
w_derivates.insert(0,w_der)
b_derivates.insert(0,delta)
for i,l in enumerate(self.layers):
l.weights = l.weights - ratio*w_derivates[i].T
l.bias = l.bias - ratio*b_derivates[i]
sigm = lambda x: 1/(1 + np.e**(-x))
sigm_derivate = lambda x: x*(1 - x) # x: activation
cost_func_derivate = lambda y,ye: (y - ye) #y: output layer
topology = [2,5,2]
inputs_net = 2
inputs_test = [np.array([[0.56,0.75]]),np.array([[0.23,0.41]])]
output_expected = np.array([[1,0]])
net = Net(inputs_net,sigm,sigm_derivate)
for i in range(0,40):
result = net.forward(inputs_test)
print(result)
net.backpropagation(output_expected,cost_func_derivate)
[[0.49781526 0.43428713]]
[[0.54692239 0.38037559]]
[[0.59013316 0.33654922]]
[[0.62697339 0.30091109]]
[[0.6578928 0.27148578]]
[[0.68372401 0.24666191]]
...
[[0.81010194 0.15138157]]
[[0.81775565 0.14460523]]
[[0.82502874 0.13799208]]
[[0.8327054 0.13172268]]
[[0.84106426 0.12684122]]
[[nan nan]]
[[nan nan]]
...
[[nan nan]]
[[nan nan]]
[[nan nan]]
C:/***/Test2.py:78: RuntimeWarning: overflow encountered in double_scalars
C:/***/Test2.py:78: RuntimeWarning: overflow encountered in power
C:/***/Test2.py:79: RuntimeWarning: overflow encountered in multiply
C:/***/Test2.py:69: RuntimeWarning: invalid value encountered in matmul
delta = (deltas[0]@self.layers[i + 1].weights)*act_func_der
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。