如何解决为什么我的GAN在某个点之后不能产生出更好的图像?
问题
我正在训练甘以产生人脸。在大约500个纪元内,它学会了生成如下图像:
然后,我对其进行了1000多个时期的训练,但是它什么也没学到。它仍在生成与上图所示相同类型的图像。怎么会这样为什么我的甘子不学习如何制作出更好的图像?
模型代码
这是鉴别符的代码:
def define_discriminator(in_shape=(64,64,3)):
Model = Sequential([
Conv2D(32,(3,3),padding='same',input_shape=in_shape),Batchnormalization(),LeakyReLU(alpha=0.2),MaxPooling2D(pool_size=(2,2)),Dropout(0.2),Conv2D(64,padding='same'),Dropout(0.3),Conv2D(128,Conv2D(256,Dropout(0.4),Flatten(),Dense(1,activation='sigmoid')
])
opt = Adam(lr=0.00002)
Model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accuracy'])
return Model
def define_generator(in_shape=100):
Model = Sequential([
Dense(256*8*8,input_dim=in_shape),Reshape((8,8,256)),Conv2DTranspose(256,strides=(2,2),Conv2DTranspose(64,Conv2DTranspose(3,(4,4),activation='sigmoid')
])
return Model
def define_gan(d_model,g_model):
d_model.trainable = False
model = Sequential([
g_model,d_model
])
opt = Adam(lr=0.0002,beta_1=0.5)
model.compile(loss='binary_crossentropy',optimizer=opt)
return model
整个可复制代码
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,Batchnormalization
from tensorflow.keras.layers import Dropout,Flatten,Dense,Conv2DTranspose
from tensorflow.keras.layers import MaxPooling2D,Activation,Reshape,LeakyReLU
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import Adam
from numpy import ones
from numpy import zeros
from numpy.random import rand
from numpy.random import randint
from numpy.random import randn
from numpy import vstack
from numpy import array
import os
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from matplotlib import pyplot
def load_data(filepath):
image_array = []
n = 0
for fold in os.listdir(filepath):
if fold != 'wiki.mat':
if n > 1:
break
for img in os.listdir(os.path.join(filepath,fold)):
image = load_img(filepath + fold + '/'+ img,target_size=(64,64))
img_array = img_to_array(image)
img_array = img_array.astype('float32')
img_array = img_array / 255.0
image_array.append(img_array)
n += 1
return array(image_array)
def generate_latent_points(n_samples,latent_dim=100):
latent_points = randn(n_samples * latent_dim)
latent_points = latent_points.reshape(n_samples,latent_dim)
return latent_points
def generate_real_samples(n_samples,dataset):
ix = randint(0,dataset.shape[0],n_samples)
x = dataset[ix]
y = ones((n_samples,1))
return x,y
def generate_fake_samples(g_model,n_samples):
latent_points = generate_latent_points(n_samples)
x = g_model.predict(latent_points)
y = zeros((n_samples,y
def save_plot(examples,epoch,n=10):
# plot images
for i in range(n * n):
# define subplot
pyplot.subplot(n,n,1 + i)
# turn off axis
pyplot.axis('off')
# plot raw pixel data
pyplot.imshow(examples[i,:,0])
# save plot to file
filename = 'generated_plot_e%03d.png' % (epoch+1)
pyplot.savefig(filename)
pyplot.close()
def summarize_performance(d_model,g_model,gan_model,dataset,n_samples=100):
real_x,real_y = generate_real_samples(n_samples,dataset)
_,d_real_acc = d_model.evaluate(real_x,real_y)
fake_x,fake_y = generate_fake_samples(g_model,n_samples)
_,d_fake_acc = d_model.evaluate(fake_x,fake_y)
latent_points,y = generate_latent_points(n_samples),ones((n_samples,1))
gan_loss = gan_model.evaluate(latent_points,y)
print('Epoch %d,acc_real=%.3d,acc_fake=%.3f,gan_loss=%.3f' % (epoch,d_real_acc,d_fake_acc,gan_loss))
save_plot(fake_x,epoch)
filename = 'Genarator_Model % d' % (epoch + 1)
g_model.save(filename)
def train(d_model,epochs=200):
batch_size = 64
half_batch = int(batch_size / 2)
batch_per_epoch = int(dataset.shape[0] / batch_size)
for epoch in range(epochs):
for i in range(batch_per_epoch):
real_x,real_y = generate_real_samples(half_batch,dataset)
_,d_real_acc = d_model.train_on_batch(real_x,real_y)
fake_x,half_batch)
_,d_fake_acc = d_model.train_on_batch(fake_x,fake_y)
latent_points,y = generate_latent_points(batch_size),ones((batch_size,1))
gan_loss = gan_model.train_on_batch(latent_points,y)
print('Epoch %d,gan_loss))
if (epoch % 2) == 0:
summarize_performance(d_model,epoch)
dataset = load_data(filepath) # filepath is not defined since every person will have seperate filepath
discriminator_model = define_discriminator()
generator_model = define_generator()
gan_model = define_gan(discriminator_model,generator_model)
train(discriminator_model,generator_model,dataset)
数据集
如果您希望here是数据集。
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。