BZOJ 1895 & POJ 3580 supermemo [SPLAY]【数据结构】

题目链接:http://poj.org/problem?id=3580
——————————————————————————————————————————
SuperMemo
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 15846 Accepted: 4992
Case Time Limit: 2000MS
Description

Your friend,Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first,the host tells the participant a sequence of numbers,{A1,A2,… An}. Then the host performs a series of operations and queries on the sequence which consists:

ADD x y D: Add D to each number in sub-sequence {Ax … Ay}. For example,performing “ADD 2 4 1” on {1,2,3,4,5} results in {1,5,5}
REVERSE x y: reverse the sub-sequence {Ax … Ay}. For example,performing “REVERSE 2 4” on {1,5}
REVOLVE x y T: rotate sub-sequence {Ax … Ay} T times. For example,performing “REVOLVE 2 4 2” on {1,5}
INSERT x P: insert P after Ax. For example,performing “INSERT 2 4” on {1,5}
DELETE x: delete Ax. For example,performing “DELETE 2” on {1,5}
MIN x y: query the participant what is the minimum number in sub-sequence {Ax … Ay}. For example,the correct answer to “MIN 2 4” on {1,5} is 2
To make the show more interesting,the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct answer to each query in order to assist Jackson whenever he calls.

Input

The first line contains n (n ≤ 100000).

The following n lines describe the sequence.

Then follows M (M ≤ 100000),the numbers of operations and queries.

The following M lines describe the operations and queries.

Output

For each “MIN” query,output the correct answer.

Sample Input

5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5
Sample Output

5

——————————————————————————————————————————

题意:
  给出一个数字序列,有6种操作:

    (1) ADD x y d: 第x个数到第y个数加d 。

    (2) REVERSE x y : 将区间[x,y]中的数翻转 。

    (3) REVOLVE x y t :将区间[x,y]旋转t次,如1 2 3 4 5 旋转2次后就变成4 5 1 2 3 。

    (4) INSERT x p :在第x个数后面插入p 。

    (5)DELETE x :删除第x个数 。

    (6) MIN x y : 查询区间[x,y]中的最小值 。

本来不想写来着 但想到 好多天没有更新博客了,加上这题还是挺好玩儿的,还是应该更新一波吧。

就是区间加,翻转,剪切,询问最值。点插入,删除。这几个操作

有翻转了 所以用SPLAY来维护一下

区间加 区间最小值就不说了 和普通的二叉搜索树一模一样.

点插入 删除

假如要插入的点在x
那么让x-1做为树根,x+1伸展到根节点下面,那么x+1的左儿子就是空出来的 加个值就好了
删除发过来一样的

区间操作

对于区间[l,r]
那么让l-1做为树根,r+1伸展到根节点下面,那么r+1的左儿子就是这个区间

但为了更好的处理[1,n]这个区间 加上个0和n+1这两个节点

翻转

同样在一个二叉树中 翻转也就是让每个节点的两个儿子交换一下顺序就好了,打个标记 就行了,

旋转

其实旋转说白了就是将这个区间分成两段然后交换一下子,

所以我们可以将后一个区间处理到一个子树上,然后放到 l1,l 这两个节点之间,就好了,先减掉,然后在加上去就好了

注: 个人的SPLAY模板正在建设,这个的代码比较杂乱,见谅.

附本题代码
——————————————————————————————————————————

//#include <bits/stdc++.h>
#include <stdio.h>

typedef long long int LL;

const int N = 200000+7;

inline int read(){
    int x=0,f=1;char ch=getchar();
    for(;ch<'0'||'9'<ch;ch=getchar())   if(ch=='-')f=-1;
    for(;'0'<=ch&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}

/*******************************************************/

/*************SPLAY-tree************/

int n,m;

int ch[N][2];  //ch[][0] lson ch[][1] rson
int f[N];      //father
int sz[N];     //size
int val[N];    //value of node_i
int lazy[N];   //lazy-tag
int mi[N];     //min of son-tree : root of i
int rev[N];    //tag of revear
int root;      //root of splay-tree
int tot;       //tot,total,is the number of node of tree

void myswap(int &x,int &y){
    x^=y,y^=x,x^=y;
}
int min(int x,int y){
    return (x<y)?x:y;
}
void update_rev(int x){
    if(!x) return ;
    myswap(ch[x][0],ch[x][1]);
    rev[x]^=1;
}

void update_add(int x,int v){
    if(x) lazy[x]+=v,val[x]+=v,mi[x]+=v;
}

void pushdown(int x){
    if(!x) return ;
    if(lazy[x]){
        update_add(ch[x][0],lazy[x]);
        update_add(ch[x][1],lazy[x]);
        lazy[x]=0;
    }
    if(rev[x]){
        update_rev(ch[x][0]);
        update_rev(ch[x][1]);
        rev[x]=0;
    }
}

void pushup(int x){
    if(!x)return ;
    sz[x]=1,mi[x]=val[x];
    if(ch[x][0])sz[x]+=sz[ch[x][0]],mi[x]=min(mi[x],mi[ch[x][0]]);
    if(ch[x][1])sz[x]+=sz[ch[x][1]],mi[ch[x][1]]);
}

void rotate(int x,int k){   // k = 0 左旋, k = 1 右旋
    int y=f[x];int z=f[y];
    pushdown(y),pushdown(x);
    ch[y][!k]=ch[x][k];if(ch[x][k])f[ch[x][k]]=y;
    f[x]=z;if(z)ch[z][ch[z][1]==y]=x;
    f[y]=x;ch[x][k]=y;
    pushup(y),pushup(x);
}
/*** 这样的SPLAY 不好么? 相比分6种旋转的 zig-zag */
void splay(int x,int goal){
    for(int y=f[x];f[x]!=goal;y=f[x])
        rotate(x,(ch[y][0]==x));
    if(goal==0) root=x;
}

void newnode(int rt,int v,int fa){
// printf("%d <---\n",rt);
    f[rt]=fa;
    mi[rt]=val[rt]=v;sz[rt]=1;
    ch[rt][0]=ch[rt][1]=rev[rt]=lazy[rt]=0;
}
void delnode(int rt){
    f[rt]=mi[rt]=val[rt]=sz[rt]=0;
    ch[rt][0]=ch[rt][1]=rev[rt]=lazy[rt]=0;
}
void build(int &rt,int l,int r,int fa){
    if(l>r) return ;
    int m = r+l >> 1;
    rt=m; newnode(rt,val[rt],fa);
    build(ch[rt][0],l,m-1,rt);
    build(ch[rt][1],m+1,r,rt);
    pushup(rt);
}

void init(int n){
    root=0;
    f[0]=sz[0]=ch[0][0]=ch[0][1]=rev[0]=0;
    build(root,1,n,0);
    pushup(root);
}

/***************************以下是DEBUG***************************/

void Traversal(int rt){
    if(!rt) return;
    pushdown(ch[rt][0]);Traversal(ch[rt][0]);
    printf("%d f[]=%d sz[]=%d lson=%d rson=%d val[]=%d mi[]=%d \n",rt,f[rt],sz[rt],ch[rt][0],ch[rt][1],mi[rt]);
    pushdown(ch[rt][1]);Traversal(ch[rt][1]);
    pushup(rt);
}
void debug(){
    printf("ROOT = %d <---\n",root);
    pushdown(root);
    Traversal(root);
}

/**************************以下是前置操作**************************/

//以x为根的子树 的最左节点
int x_left(int x){
    for(pushdown(x);ch[x][0];pushdown(x)) x=ch[x][0];
    return x;
}
//以x为根的子树 的最右节点
int x_right(int x){
    for(pushdown(x);ch[x][1];pushdown(x)) x=ch[x][1];
    return x;
}
//以x为根的子树 第k个数的位置
int kth(int x,int k){
    pushdown(x);
    if(sz[ch[x][0]]+1 == k) return x;
    else if(sz[ch[x][0]]>=k) return kth(ch[x][0],k);
    else return kth(ch[x][1],k-sz[ch[x][0]]-1);
}

/***************************以下是正经操作**************************/
/*** 如果有区间为[1,n]情况不好处理, 所以我们可以 多添加一个head,一个tail 这样的话区间[1,n]就是tail的左儿子了,*/
//区间交换
void exchange(int l1,int r1,int l2,int r2){
    int x=kth(root,l2-1),y=kth(root,r2+1);
    splay(x,0),splay(y,x);
    int tmp_right = ch[y][0]; ch[y][0]=0;
    x=kth(root,l1-1),l1);
    splay(x,x);
    ch[y][0] = tmp_right;
    f[tmp_right]=y;
}

//区间翻转
void reversal(int l,int r){
    int x=kth(root,l-1),r+1);
    splay(x,0);splay(y,x);
    update_rev(ch[y][0]);
}

//区间加
void add(int l,int v){
    int x=kth(root,x);
    update_add(ch[y][0],v);
}

//按照二叉排序树性质插入x
void _insert(int x){
    /** 其实我们也可以 将插入后临街的两个节点 a x b 将a伸展到根 b伸展到 根下 那么b的左儿子一定没有,插进去就行了, */
}

//在第k个数后插入值为x的节点
void _insert(int k,int x){
    int r=kth(root,k),rr=kth(root,k+1);
    splay(r,splay(rr,r);
// puts("begin insert <-------------------");
// printf("%d %d %d\n",rr,tot);
// debug();
// puts("end insert <-------------------");
    newnode(++tot,x,rr);ch[rr][0]=tot;
    for(r=rr;r;r=f[r])pushdown(r),pushup(r);
    splay(rr,0);
}

//删除第k个数
void _delete(int k){
    splay(kth(root,k-1),0);
    splay(kth(root,k+1),root);
    delnode(ch[ch[root][1]][0]);
    ch[ch[root][1]][0]=0;
    pushup(ch[root][1]);
    pushup(root);
}

//int get_max(int l,int r){
// int x=kth(root,l-1),r+1);
// splay(x,0);splay(y,x);
// return mx[ch[y][0]];
//}

int get_min(int l,x);
    return mi[ch[y][0]];
}

/*****************************************************/

char s[12];

int main(){
    scanf("%d",&n);
    val[1]=val[n+2]=1000000000;
    for(int i=1+1;i<=n+1;i++) val[i]=read();
    tot=n+2;init(n+2);
    scanf("%d",&m);
    for(int i=1,d,v;i<=m;i++){
        scanf("%s",s);
        if(s[0]=='A'){ //ADD
            scanf("%d%d%d",&l,&r,&d);
            add(l+1,r+1,d);
        }
        else if(s[0]=='I'){ //INSERT
            scanf("%d%d",&d);
            _insert(l+1,d);
        }
        else if(s[0]=='M'){ //MIN
            scanf("%d%d",&r);
            printf("%d\n",get_min(l+1,r+1));
        }
        else if(s[0]=='D'){ //DELETE
            scanf("%d",&l);
            _delete(l+1);
        }
        else if(s[3]=='E'){ //REVERSE
            scanf("%d%d",&r);
            reversal(l+1,r+1);
        }
        else { //REVOLVE
            scanf("%d%d%d",&d);
            d=(d%(r-l+1)+r-l+1)%(r-l+1);
            if(d) exchange(l +1,r-d +1,r-d+1 +1,r +1);
        }
// debug();
    }
// debug();

    return 0;
}

/**** 5 1 2 3 4 5 6 ADD 1 3 1 INSERT 3 3 DELETE 4 MIN 1 5 MIN 2 5 REVOLVE 1 5 2 10 1 2 3 4 5 6 7 8 9 10 15 ADD 4 8 3 MIN 5 7 MIN 7 10 REVERSE 2 5 MIN 2 6 MIN 2 3 INSERT 3 4 MIN 3 4 MIN 5 10 DELETE 6 MIN 3 5 MIN 4 4 REVOLVE 3 6 7 MIN 5 8 MIN 7 10 // */

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


【啊哈!算法】算法3:最常用的排序——快速排序       上一节的冒泡排序可以说是我们学习第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了O(N2)。假如我们的计算机每秒钟可以运行10亿次,那么对1亿个数进行排序,桶排序则只需要0.1秒,而冒泡排序则需要1千万秒,达到115天之久,是不是很吓人。那有没有既不浪费空间又可以快一点的排序算法
匿名组 这里可能用到几个不同的分组构造。通过括号内围绕的正则表达式就可以组成第一个构造。正如稍后要介绍的一样,既然也可以命名组,大家就有考虑把这个构造作为匿名组。作为一个实例,请看看下列字符串: “08/14/57 46 02/25/59 45 06/05/85 18 03/12/88 16 09/09/90 13“ 这个字符串就是由生日和年龄组成的。如果需要匹配年两而不要生日,就可以把正则
选择排序:从数组的起始位置处开始,把第一个元素与数组中其他元素进行比较。然后,将最小的元素方式在第0个位置上,接着再从第1个位置开始再次进行排序操作。这种操作一直到除最后一个元素外的每一个元素都作为新循环的起始点操作过后才终止。 public void SelectionSort() { int min, temp;
public struct Pqitem { public int priority; public string name; } class CQueue { private ArrayList pqueue; public CQueue() { pqueue
在编写正则表达式的时候,经常会向要向正则表达式添加数量型数据,诸如”精确匹配两次”或者”匹配一次或多次”。利用数量词就可以把这些数据添加到正则表达式里面了。 数量词(+):这个数量词说明正则表达式应该匹配一个或多个紧紧接其前的字符。 string[] words = new string[] { "bad", "boy", "baad", "baaad" ,"bear", "b
来自:http://blog.csdn.net/morewindows/article/details/6678165/归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列
插入排序算法有两层循环。外层循环会啄个遍历数组元素,而内存循环则会把外层循环所选择的元素与该元素在数组内的下一个元素进行比较。如果外层循环选择的元素小于内存循环选择的元素,那么瘦元素都想右移动以便为内存循环元素留出位置。 public void InsertionSort() { int inner, temp;
public int binSearch(int value) { int upperBround, lowerBound, mid; upperBround = arr.Length - 1; lowerBound = 0; while (lowerBound <= upper
虽然从表内第一个节点到最后一个节点的遍历操作是非常简单的,但是反向遍历链表却不是一件容易的事情。如果为Node类添加一个字段来存储指向前一个节点的连接,那么久会使得这个反向操作过程变得容易许多。当向链表插入节点的时候,为了吧数据复制给新的字段会需要执行更多的操作,但是当腰吧节点从表移除的时候就能看到他的改进效果了。 首先需要修改Node类来为累增加一个额外的链接。为了区别两个连接,这个把指
八、树(Tree)树,顾名思义,长得像一棵树,不过通常我们画成一棵倒过来的树,根在上,叶在下。不说那么多了,图一看就懂:当然了,引入了树之后,就不得不引入树的一些概念,这些概念我照样尽量用图,谁会记那么多文字?树这种结构还可以表示成下面这种方式,可见树用来描述包含关系是很不错的,但这种包含关系不得出现交叉重叠区域,否则就不能用树描述了,看图:面试的时候我们经常被考到的是一种叫“二叉树”的结构,二叉
Queue的实现: 就像Stack类的实现所做的一样,Queue类的实现用ArrayList简直是毋庸置疑的。对于这些数据结构类型而言,由于他们都是动态内置的结构,所以ArrayList是极好的实现选择。当需要往队列中插入数据项时,ArrayList会在表中把每一个保留的数据项向前移动一个元素。 class CQueue { private ArrayLis
来自:http://yingyingol.iteye.com/blog/13348911 快速排序介绍:快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地
Stack的实现必须采用一种基本结构来保存数据。因为再新数据项进栈的时候不需要担心调整表的大小,所以选择用arrayList.using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;using System.Collecti
数组类测试环境与排序算法using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;namespace Data_structure_and_algorithm{ class CArray { pr
一、构造二叉树 二叉树查找树由节点组成,所以需要有个Node类,这个类类似于链表实现中用到的Node类。首先一起来看看Node类的代码。 public class Node { public int Data; public Node Left; public Node Right; public v
二叉树是一种特殊的树。二叉树的特点是每个结点最多有两个儿子,左边的叫做左儿子,右边的叫做右儿子,或者说每个结点最多有两棵子树。更加严格的递归定义是:二叉树要么为空,要么由根结点、左子树和右子树组成,而左子树和右子树分别是一棵二叉树。 下面这棵树就是一棵二叉树。         二叉树的使用范围最广,一棵多叉树也可以转化为二叉树,因此我们将着重讲解二叉树。二叉树中还有连两种特殊的二叉树叫做满二叉树和
上一节中我们学习了队列,它是一种先进先出的数据结构。还有一种是后进先出的数据结构它叫做栈。栈限定只能在一端进行插入和删除操作。比如说有一个小桶,小桶的直径只能放一个小球,我们现在向小桶内依次放入2号、1号、3号小球。假如你现在需要拿出2号小球,那就必须先将3号小球拿出,再拿出1号小球,最后才能将2号小球拿出来。在刚才取小球的过程中,我们最先放进去的小球最后才能拿出来,而最后放进去的小球却可以最先拿
msdn中的描述如下:(?= 子表达式)(零宽度正预测先行断言。) 仅当子表达式在此位置的右侧匹配时才继续匹配。例如,w+(?=d) 与后跟数字的单词匹配,而不与该数字匹配。此构造不会回溯。(?(零宽度正回顾后发断言。) 仅当子表达式在此位置的左侧匹配时才继续匹配。例如,(?此构造不会回溯。msdn描述的比较清楚,如:w+(?=ing) 可以匹配以ing结尾的单词(匹配结果不包括ing),(
1.引入线索二叉树 二叉树的遍历实质上是对一个非线性结构实现线性化的过程,使每一个节点(除第一个和最后一个外)在这些线性序列中有且仅有一个直接前驱和直接后继。但在二叉链表存储结构中,只能找到一个节点的左、右孩子信息,而不能直接得到节点在任一遍历序列中的前驱和后继信息。这些信息只有在遍历的动态过程中才能得到,因此,引入线索二叉树来保存这些从动态过程中得到的信息。 2.建立线索二叉树 为了保
排序与我们日常生活中息息相关,比如,我们要从电话簿中找到某个联系人首先会按照姓氏排序、买火车票会按照出发时间或者时长排序、买东西会按照销量或者好评度排序、查找文件会按照修改时间排序等等。在计算机程序设计中,排序和查找也是最基本的算法,很多其他的算法都是以排序算法为基础,在一般的数据处理或分析中,通常第一步就是进行排序,比如说二分查找,首先要对数据进行排序。在Donald Knuth 的计算机程序设