python – 如何在tensorflow中计算PDF

在Matlab中,我可以使用计算高斯分布的概率密度函数(PDF)

x = [0.8147,0.9058,0.1270,0.9134,0.6324,0.0975,0.2785,0.5469,0.9575,0.9649]
y = normpdf(x,1.0,2.5)

输出:

y = 0.1591    0.1595    0.1501    0.1595    0.1579    0.1495    0.1531    0.1570    0.1596    0.1596

使用张量流,我试过这个

x = tf.variable([0.8147,0.9058,0.1270,0.9134,0.6324,0.0975,0.2785,0.5469,0.9575,0.9649],tf.float32)
y = tf.contrib.distributions.NormalWithSoftplusSigma.pdf(x)

我得到一个错误TypeError:pdf缺少1个必需的位置参数

如何输入mu和sigma值到这个发行版?得到类似的输出.

解决方法:

首先创建一个Normal分布对象,然后使用pdf方法

dist = tf.contrib.distributions.Normal(1.0, 2.5)
y = dist.pdf(x)

有关详细信息,请参见this.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐