MySQL5.7性能与数据安全大幅提升的缘由

《MySQL5.7性能与数据安全大幅提升的缘由》要点:
本文介绍了MySQL5.7性能与数据安全大幅提升的缘由,希望对您有用。如果有疑问,可以联系我们。

大家都知道在mysql中,在事务真正commit之前,会将事务的binlog日志写入到binlog 文件中,在mysql的5.7版本中,提供了所谓的无损复制的功能,该功能作用–就是在主库的事务对其他的会话线程可见之前,就将该事务的日志同步到从库,保证了事务可以安全地无丢失地复制到从库.

下面我们从源码来分析mysql的事务提交以及事务在何时将binlog复制到从库的.

MYSQL_BIN_LOG::ordered_commit,这个是事务在binlog阶段提交的核心函数,通过该函数,实现了事务日志写入binlog文件,以及触发dump线程将binlog发送到slave,在最后的步骤,将事务设置为提交状态.

我们来分析MYSQL_BIN_LOG::ordered_commit这个函数的核心过程,该函数位于binlog.cc文件中.

源码解析

MYSQL_BIN_LOG::ordered_commit,这个函数,核心步骤如下:

第一步骤:flush

Stage#1: flushing transactions to binary log:

步骤1 :将事务的日志写入binlog文件的buffer中,函数如下:

process_flush_stage_queue(&total_bytes,&do_rotate,&wait_queue);

从5.6开始,mysql引入了group commit 的概念,这样可以避免每个事务提交都会锁定一次binlog.另外,还有一个用处,就是mysql的5.7的基于logical_clock的并行复制.在一个组里面(其实是一个队列),这一组队列的头事务是相同的,因此这一组事务的last_committed(上一组的最后一个提交的事务)的事务也是同一个.我们都知道,last_committed相同的事务,是可以在从库并行relay(重演)的.该函数process_flush_stage_queue的作用,就是将commit队列中的线程一个一个的取出,然后执行子函数 flush_thread_caches(head);循环的代码如下:将各自线程中的binlog cache写入到binlog中.

/* Flush thread caches to binary log. */

for (THD *head= first_seen ; head ; head = head->next_to_commit)

{

std::pair<int,my_off_t>result= flush_thread_caches(head);

total_bytes+= result.second;

if(flush_error == 1)

flush_error= result.first;

#ifndef DBUG_OFF

no_flushes++;

#endif

}

 第二步骤SYNC to disk

Stage#2: Syncing binary log file to disk

第二步:将binlog file中cache的部分写入disk.但这个步骤参数sync_binlog起决定性的作用.

我们来看看源码,除了这些还有哪些细节步骤,看完源码分析之后,你应该有新的收获与理解.

在执行真正的将binlog写到磁盘之前,会进行一个等待,函数如下:

stage_manager.wait_count_or_timeout(opt_binlog_group_commit_sync_no_delay_count,

opt_binlog_group_commit_sync_delay,

Stage_manager::SYNC_STAGE);

等待的时间由mysql参数文件中的binlog_group_commit_sync_delay,binlog_group_commit_sync_no_delay_count 这两参数共同决定,第一个表示该事务组提交之前总共等待累积到多少个事务,第二个参数则表示该事务组总共等待多长时间后进行提交,任何一个条件满足则进行后续操作.因为有这个等待,可以让更多事务的binlog通过一次写binlog文件磁盘来完成提交,从而获得更高的吞吐量.

接下来,就是执行sync_binlog_file,该函数会用到mysql参数文件中sync_binlog参数的值,如果为0,则不进行写磁盘操作,由操作系统决定什么时候刷盘,如果为1,则强制进行写磁盘操作.

再接下来,执行update_binlog_end_pos函数,用来更新binlog文件的最后的位置binlog_end_pos,该binlog_end_pos是一个全局的变量.在执行更新该位置之前,先得找到最后一个提交事务的线程(因为是group commit,多个事务排队提交的机制).因为已经将要提交事务的线程组成了一个链表,通过从头到尾找,可以找到最后一个线程.代码如下:

if(update_binlog_end_pos_after_sync)

{

THD*tmp_thd= final_queue;

while(tmp_thd->next_to_commit != NULL)

tmp_thd= tmp_thd->next_to_commit;

update_binlog_end_pos(tmp_thd->get_trans_pos());

}

接下来,我们来看一下这个函数update_binlog_end_pos,这个函数很简单,传入一个pos,然后将其赋值给全局变量binlog_end_pos,接下来就是最核心的一行代码,signal_update(),发送binlog更新的信号,因此从主库同步binlog到从库的dump线程,会接收到这个binlog已有更新的信号,然后启动dump binlog的流程.

函数update_binlog_end_pos的完整代码如下.

 semisync

通过上面的步骤介绍,我们看到,在binlog文件的最新位置更新的时候,就已经通过signal_update函数发送信号给binlog的dump线程,该线程就可以将事务的binlog同步到从库,从库接收到日志之后,就可以relay日志,实现了主从同步.因此,再次重复说明一下,按照上面的解释,在事务真正提交完成之前就开始发送了binlog已经更新的信号,dump线程收到信号,即可以进行binlog的同步.而semisync的作用是什么呢?

实际上,有没有semisync机制,上面介绍的mysql的有关事务提交中关于binlog的流程都是一样的,semisync的作用,只是主从之间的一个确认过程,主库等待从库返回相关位置的binlog已经同步到从库的确认,(而实际实现则是等待dump线程给用户会话线程一个回复),没有得到确认之前(或者等待时间达到timeout),事务提交则在该函数(步骤)上等待直至获得返回.具体执行binlog已经同步到某个位置的的确认函数为repl_semi_report_binlog_sync,函数如下:

int repl_semi_report_binlog_sync(Binlog_storage_param *param,

constchar *log_file,

my_off_t log_pos)

{

if(rpl_semi_sync_master_wait_point == WAIT_AFTER_SYNC)

return repl_semisync.commitTrx(log_file,log_pos);

return 0;

}

通过观察上述函数,我们可以看到有个rpl_semi_sync_master_wait_point变量与WAIT_AFTER_SYNC比较,如果不相等,则直接返回,直接返回则表示不需要在此时此刻确认binlog是否已经同步,而这个变量的取值来自于半同步参数semi_sync_master_wait_point的初始设置,我们可以设置为after_sync与after_commit.这两个参数含义的区别是:after_sync是在将binlog sync到disk之后(具体是否真正sync由参数sync_binlog的值决定)进行日志同步确认,而after_commit是将事务完成在innodb里面提交之后再进行binlog的同步确认.两者确认的时间点不同,after_sync要早于after_commit.

接下来,我们来看repl_semisync.commitTrx 这个函数,这个函数有两个传入参数,一个是binlog文件,一个binlog文件的位移.我们来看这个函数的含义吧.算了,还是直接用源码的注释来解释吧.

函数

上面的注释说得相当清楚,就是该commiTRX函数会等待binlog-dump返回已经同步到该位置的报告,如果还没有同步到该位置,则继续等待,直到超时返回.

当会话线程收到该函数的返回时,事务的提交过程继续往下走,直至在innodb真正提交.

总结

通过上述对mysql的事务提交过程中的前段分析,应该可以了解semi-sync的同步机制与异步机制的区别,semi-sync的主从同步机制与异步机制在同步的处理方式上无任何区别,唯一的区别就是semi-sync在事务提交中段(假如设置为after_sync)或者提交后的阶段(after_commit),有一个验证该事务涉及的binlog是否已经同步到从库,而这个同步验证,会拉长整个事务的提交时间,因为事务提交在数据库中几乎是串行(如果按group commit为一个单位,就算是完全地串行),是影响mysql吞吐量的关键点,当这个关键点被拉长,所以对全局的影响就被放大.虽然仅仅多了这么一个确认的动作,但当主库处于semi-sync的同步状态与异步状态的吞吐量相比,相差了好几倍.上述解释就是其真正的原因.

部分历史文章:

2017数据库大会实录-MySQL核心参数含义的源码解析

配置mysql的group replication过程以及遇到的错误

mysql的缓存池中的LRU列表实现机制源码解析

(续)为什么当磁盘IO成瓶颈之后数据库的性能急剧下降—性能更悲剧篇

为什么当磁盘IO成瓶颈之后数据库的性能急剧下降

文章来自微信公众号:数据库随笔

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


每个HTTP请求和响应都会带有相应的头部信息。默认情况下,在发送XHR请求的同时,还会发送下列头部信息: Accept:浏览器能够处理的内容类型 Accept-Charset:浏览器能够显示的字符集
&quot;Markdown自动生成目录&quot; &quot;使用npm语法生成&quot; &quot;1、安装npm&quot; &quot;2、安装doctoc插件&quot; &quot;
当我们从客户端向服务器发送请求时&#160;服务器向我们返回状态码&#160;状态码就是告诉我们服务器响应的状态&#160;通过它,我们就可以知道当前请求是成功了还是出现了什么问题&#160;状态码是
原理 介绍 哈希表(Hash table,也叫散列表), 是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映
一 共享秘钥 1.1 概念 共享秘钥和我们生活中同一把锁的钥匙概念类似,对同一把锁来说,加锁时使用什么钥匙,解锁也必须使用同样的钥匙。 1.2 共享秘钥在HTTP传输中的缺点 以共享密钥方式加密时必须
正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板,简单的说,我是一个用户,我访问不了某网站,但是我能访问一个代理服务器这个代理服务器呢,他能访问那个我不能访问的网站于是我先连上代
如果你是网站的开发者或维护者,就不得不重视盗链的问题了。如果你刚刚开发完一个没有防盗链的带有文件下载功能的网站,挂上internet,然后上传几个时下非常热门的软件或电影并在网站内公布下载地址,让MS
select,poll,epoll区别总结 select,poll,epoll都是I/O多路复用。I/O多路复用就是通过一种机制,可以监测多个描述符,一旦某个描述就绪(一般是读或者写),能够通知程序进
PS: https就是http和TCP之间有一层SSL层,这一层的实际作用是防止钓鱼和加密。防止钓鱼通过网站的证书,网站必须有CA证书,证书类似于一个解密的签名。另外是加密,加密需要一个密钥交换算法,
一、什么是http协议 HTTP是一个应用层协议,无状态的,端口号为80。主要的版本有1.0/1.1/2.0. HTTP/1.* 一次请求-响应,建立一个连接,用完关闭; HTTP/1.1 串行化单线
host文件的工作原理及应用 Hosts文件是一个用于存储计算机网络中节点信息的文件,它可以将主机名映射到相应的IP地址,实现DNS的功能,它可以由计算机的用户进行控制。 一、Hosts文件基本介绍
HTTP 2.0是在SPDY(An experimental protocol for a faster web, The Chromium Projects)基础上形成的下一代互联网通信协议。HTT
虚拟地址和物理地址 第一层理解 1、每个进程都有自己独立的4g内存空间,每个进程的内存空间都具有类似的结构。 2、一个新进程建立的时候,将会建立自己的内存空间,此进程的数据,代码等数据从磁盘拷贝到自己
0x00 前言 发现自己学习python已经有半个月了,也开发了自己的一些渗透的小脚本,但觉得还是不够,我个人觉得工具和脚本还有框架是个本质上的区别。脚本的话,不会考虑到其他的一些因素,例如报错和交互
0x00 前言 由于昨天520,今天又是521,我被朋友圈和qq空间给刷屏了,都在秀对象。一气之下决定把我上次写的nc拿出来使用类进行重构,多实例化几个对象,这下子我也有对象了。 0x01 一些小插曲
upload labs通关 0x00 前言 这段时间一直在忙,没时间来更新文章,这里就写篇upload labs的通关手册吧,现在包括网上也有很多upload通关手册,但是在这里还是想自己去写一篇,来
0x00 前言 介于这段时间比较忙,所以博客的更新也比较慢。本来想前几天就发这个mssql数据库的,但是因为mssql的结构比较复杂,利用方式也比较多,所以又去深入研究了一下mssql的数据库结构和各
0x00 了解数据库 数据库是“按照数据结构来组织、存储和管理数据的仓库”。是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。 数据库是以一定方式储存在一起、能与多个用户共享、
0x00 前言 现在access的站,比较少,有的话也是小型网站在用,因为access的性能比较差,多人访问都能卡死,所以很多网站都很少会采用access的数据库搭建。但是该学的我们还是得学。 0x0
记一次某企业实战 0x00 前言 近段时间来也没怎么更新过博客,在这里就来水篇文章吧。 前段时间一直在做项目,也来分享并且记录一下自己的一些成果,和一些小思路。 0x01 信息收集 渗透的第一步肯定是