Keras深度学习实战20——DeepDream模型详解

0. 前言

《对抗样本生成》一节中,我们通过略微修改输入图像的像素值以改变模型对图像类别的预测。在本节中,我们同样对输入图像略微进行一些修改,但并不以改变图像的标签为目标,本节的目标是令修改后的图像比原始图像更具艺术感,而且能够帮助我们理解卷积神经网络背后的机制。同时,本节所介绍算法也是我们之后将要介绍的神经风格迁移技术的核心。

1. DeepDream 的技术原理

首先,我们先了解 DeepDream 的技术原理。在图像识别相关博文中,我们学习了如何利用卷积神经网络进行图像识别,利用若干卷积操作处理输入图像,输入图像类别标签。在模型训练阶段,使用大量训练图像计算梯度信息,网络根据梯度信息调整和学习最佳参数。
《对抗攻击》中,我们知道,如果想让一张图像被判断为某一指定类别,可以将输出概率作为优化目标,不断调整输入图像的像素值,让指定类别的输出概率尽可能大。类似的,假设我们想知道神经网络中间的卷积层究竟学到了什么,只需要最大化卷积层某一通道的输出,由于在大多数卷积层中都包含多个通道,因此卷积的一个通道就可以代表一种学习到的“信息”。以某个通道的值作为优化目标,就可以明白这个通道究竟学习到了什么,这也就是 DeepDream 的基本原理。
我们通过预训练的模型传递图像,并使用我们希望获得激活的神经网络层。神经网络会调整输入像素值,直到令所选网络层的激活值最大。同时,我们还需要确保激活的最大值不超过设定的阈值,因为我们不希望生成的图像与原始图像有巨大差异。

2. DeepDream 模型分析

DeepDream 有了简单的了解后,接下来,我们制定实现 DeepDream 算法的策略:

  • 选择需要最大化激活的神经网络层,并给这些网络层分配更大的权重以增加它们在总损失中的比重
  • 提取给定神经网络层得到的图像特征,并计算每一层的损失值:
    • 当该层中图像输出的平方和最高时,该图像在该层的激活值最大
    • 提取输入像素值相对于损失的梯度变化
  • 根据提取的梯度变化更新输入图像像素值
  • 为更新的输入图像像素值计算所有选定网络层上的损失值,即网络层激活值的平方和
  • 如果损失值大于预定义的阈值,则停止更新图像

3. DeepDream 算法实现

在本节中,我们使用 keras 实现 DeepDream 算法,生成更具艺术风格的图像。

3.1 数据加载与预处理

导入相关的库,并加载图片:

from keras import backend as K
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import cv2
from PIL import Image

file_path = '5.png'
img_nrows = 224
img_ncols = 224
original_shape = cv2.imread(file_path).shape

原始图像

同样与对抗样本生成一样,如果使用 TensorFlow2 作为 Keras 的后端,需要在代码开头加上以下代码,切换梯度求解的执行模型:

import tensorflow as tf
tf.compat.v1.disable_eager_execution()

定义图像预处理函数,以便随后可以将其传递给 VGG19 模型:

def preprocess_image(image_path):
    img = image.load_img(image_path, target_size=(img_nrows, img_ncols))
    img = image.img_to_array(img)
    # 维度扩展
    img = np.expand_dims(img, axis=0)
    # 数据预处理
    img[:, :, :, 0] -= 103.939
    img[:, :, :, 1] -= 116.779
    img[:, :, :, 2] -= 123.68
    img = img[:, :, :, ::-1] / 255
    return img

构建一个对处理后的图像进行逆操作的函数,以进行可视化:

def deprocess_image(x):
    x = x[:, :, :, ::-1] * 225
    x[:, :, :, 0] += 103.939
    x[:, :, :, 1] += 116.779
    x[:, :, :, 2] += 123.68
    x = np.clip(x, 0, 255).astype('uint8')[0]
    x = Image.fromarray(x).resize((original_shape[1], original_shape[0]))
    return x

使用以上预处理函数 preprocess_image,预处理图像,并加载预训练的 VGG19 模型:

img = preprocess_image(file_path)
model = VGG19(include_top=False, weights='imagenet')

3.2 DeepDream 生成模型

定义用于总损失值计算的神经网络层,使用第 2 个和第 5 个池化层用于总损失的计算,并为它们分配权重,使不同层将对总损失值具有不同贡献,可以使用其他的网络层和权重组合,生成不同图片:

layer_contributions = {
    'block2_pool':0.5,
    'block5_pool': 1.2}

初始化损失函数以及模型中各个网络层的字典:

layer_dict = dict([(layer.name, layer) for layer in model.layers])
loss = K.variable(0.)

计算激活的总损失值,遍历选定用于计算激活的网络层 (layer_contributions),并记录分配给每个网络层的权重 (coeff)。另外,我们计算选定神经网络层的输出 (activation),并在缩放后使用激活值的平方和来更新损失值:

for layer_name in layer_contributions:
    coeff = layer_contributions[layer_name]
    activation = layer_dict[layer_name].output
    scaling = K.prod(K.cast(K.shape(activation), 'float32'))
    loss = loss + coeff * K.sum(K.square(activation)) / scaling
    print(loss)

初始化梯度值,使用 K.gradients 方法可以用于计算损失相对于输入 dream 的梯度变化:

dream = model.input
grads = K.gradients(loss, dream)[0]
print(dream, grads)

标准化梯度值,以使梯度的变化更加平缓:

grads /= K.maximum(K.mean(K.abs(grads)), 1e-7)

创建函数,将输入图像 dream 映射到损失值和损失值相对于输入像素值的梯度变化:

outputs = [loss, grads]

fetch_loss_and_grads = K.function([dream], outputs)

定义函数 eval_loss_and_grads,使用 fetch_loss_and_grads 函数计算输入图像的损失和梯度变化,并返回:

def eval_loss_and_grads(img):
    outs = fetch_loss_and_grads([img])
    loss_value = outs[0]
    grad_values = outs[1]
    return loss_value, grad_values

多次迭代计算的损失和梯度变化更新原始图像,我们循环遍历图像 100 次,首先定义更改学习率以及最大的损失上限,即图像修改的上限:

for i in range(100):
    learning_rate = 0.01
    max_loss = 30

接下来,计算图像的损失和梯度变化值,如果损失值大于定义的阈值,则停止修改图像:

    loss_value, grad_values = eval_loss_and_grads(img)
    if max_loss is not None and loss_value > max_loss:
        print(loss_value)
        break
    print('...Loss value at', i, ':', loss_value)

基于梯度变化修改图像,并对图像进行逆向处理并进行可视化:

    img += learning_rate * grad_values
    img2 = deprocess_image(img.copy())
    plt.imshow(img2)
    plt.axis('off')
    plt.show()

代码生成的最终图像如下所示:

DeepDream 生成结果图像

从上图可以看到,图像中的包含波浪形的模式,这些模式是由于令各个网络层的激活最大化的结果。

小结

DeepDream 利用训练完成的深度卷积神经网络,仅需要优化模型卷积层某个通道的激活值即可生成令人印象深刻的图像。本节首先介绍了 DeepDream 的基本原理,并使用 Keras 实现了 DeepDream 生成模型,不仅能够生成富有艺术感的图像,同时加深对卷积神经网络的背后运行机制的理解。

系列链接

Keras深度学习实战(1)——神经网络基础与模型训练过程详解
Keras深度学习实战(2)——使用Keras构建神经网络
Keras深度学习实战(3)——神经网络性能优化技术
Keras深度学习实战(4)——深度学习中常用激活函数和损失函数详解
Keras深度学习实战(5)——批归一化详解
Keras深度学习实战(6)——深度学习过拟合问题及解决方法
Keras深度学习实战(7)——卷积神经网络详解与实现
Keras深度学习实战(8)——使用数据增强提高神经网络性能
Keras深度学习实战(9)——卷积神经网络的局限性
Keras深度学习实战(10)——迁移学习详解
Keras深度学习实战(11)——可视化神经网络中间层输出
Keras深度学习实战(12)——面部特征点检测
Keras深度学习实战(13)——目标检测基础详解
Keras深度学习实战(14)——从零开始实现R-CNN目标检测
Keras深度学习实战(15)——从零开始实现YOLO目标检测
Keras深度学习实战(16)——自编码器详解
Keras深度学习实战(17)——使用U-Net架构进行图像分割
Keras深度学习实战(18)——语义分割详解
Keras深度学习实战(19)——使用对抗攻击生成可欺骗神经网络的图像

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


学习编程是顺着互联网的发展潮流,是一件好事。新手如何学习编程?其实不难,不过在学习编程之前你得先了解你的目的是什么?这个很重要,因为目的决定你的发展方向、决定你的发展速度。
IT行业是什么工作做什么?IT行业的工作有:产品策划类、页面设计类、前端与移动、开发与测试、营销推广类、数据运营类、运营维护类、游戏相关类等,根据不同的分类下面有细分了不同的岗位。
女生学Java好就业吗?女生适合学Java编程吗?目前有不少女生学习Java开发,但要结合自身的情况,先了解自己适不适合去学习Java,不要盲目的选择不适合自己的Java培训班进行学习。只要肯下功夫钻研,多看、多想、多练
Can’t connect to local MySQL server through socket \'/var/lib/mysql/mysql.sock问题 1.进入mysql路径
oracle基本命令 一、登录操作 1.管理员登录 # 管理员登录 sqlplus / as sysdba 2.普通用户登录
一、背景 因为项目中需要通北京网络,所以需要连vpn,但是服务器有时候会断掉,所以写个shell脚本每五分钟去判断是否连接,于是就有下面的shell脚本。
BETWEEN 操作符选取介于两个值之间的数据范围内的值。这些值可以是数值、文本或者日期。
假如你已经使用过苹果开发者中心上架app,你肯定知道在苹果开发者中心的web界面,无法直接提交ipa文件,而是需要使用第三方工具,将ipa文件上传到构建版本,开...
下面的 SQL 语句指定了两个别名,一个是 name 列的别名,一个是 country 列的别名。**提示:**如果列名称包含空格,要求使用双引号或方括号:
在使用H5混合开发的app打包后,需要将ipa文件上传到appstore进行发布,就需要去苹果开发者中心进行发布。​
+----+--------------+---------------------------+-------+---------+
数组的声明并不是声明一个个单独的变量,比如 number0、number1、...、number99,而是声明一个数组变量,比如 numbers,然后使用 nu...
第一步:到appuploader官网下载辅助工具和iCloud驱动,使用前面创建的AppID登录。
如需删除表中的列,请使用下面的语法(请注意,某些数据库系统不允许这种在数据库表中删除列的方式):
前不久在制作win11pe,制作了一版,1.26GB,太大了,不满意,想再裁剪下,发现这次dism mount正常,commit或discard巨慢,以前都很快...
赛门铁克各个版本概览:https://knowledge.broadcom.com/external/article?legacyId=tech163829
实测Python 3.6.6用pip 21.3.1,再高就报错了,Python 3.10.7用pip 22.3.1是可以的
Broadcom Corporation (博通公司,股票代号AVGO)是全球领先的有线和无线通信半导体公司。其产品实现向家庭、 办公室和移动环境以及在这些环境...
发现个问题,server2016上安装了c4d这些版本,低版本的正常显示窗格,但红色圈出的高版本c4d打开后不显示窗格,
TAT:https://cloud.tencent.com/document/product/1340