ASP.NET Core中的依赖注入3: 服务的注册与提供

在采用了依赖注入的应用中,我们总是直接利用DI容器直接获取所需的服务实例,换句话说,DI容器起到了一个服务提供者的角色,它能够根据我们提供的服务描述信息提供一个可用的服务对象。ASP.NET Core中的DI容器体现为一个实现了IServiceProvider接口的对象。

ServiceProvider与ServiceDescriptor
服务的注册与提供
    利用ServiceProvider来提供服务
    提供一个服务实例的集合
    获取ServiceProvider自身对象
    对泛型的支持

一、ServiceProvider与ServiceDescriptor

我一直觉得优秀的设计首先应该是简单的设计,至少是看起来简单的设计,这就是我们所谓的大道至简。作为一个服务的提供者,ASP.NET Core中的DI容器最终体现为一个IServiceProvider接口,我们将所有实现了该接口的类型及其实例统称为ServiceProvider。如下面的代码片段所示,该接口简单至极,它仅仅提供了唯一个GetService方法,该方法根据提供的服务类型为你提供对应的服务实例。

   1: public interface IServiceProvider
   2: {
   3:     object GetService(Type serviceType);
   4: }

ASP.NET Core内部真正使用的是一个实现了IServiceProvider接口的内部类型(该类型的名称为“ServiceProvider”),我们不能直接创建该对象,只能间接地通过调用IServiceCollection接口的扩展方法BuildServiceProvider得到它。IServiceCollection接口定义在“Microsoft.Extensions.DependencyInjection”命名空间下,如果没有特别说明,本系列文章涉及到的与ASP.NET Core依赖注入相关的类型均采用此命名空间。 如下面的代码片段所示,IServiceCollection接口实际上代表一个元素为ServiceDescriptor对象的集合,它直接继承了另一个接口IList<ServiceDescriptor>,而ServiceCollection类实现了该接口。

static IServiceProvider BuildServiceProvider(this IServiceCollection services);
   5:  
   6: interface IServiceCollection : IList<ServiceDescriptor>
   7: {}
   8:  
   9: Public class ServiceCollection: IServiceCollection
  10: {
  11:     //省略成员
  12: }

体现为DI容器的ServiceProvider之所以能够根据我们给定的服务类型(一般是一个接口类型)提供一个能够开箱即用的服务实例,是因为我们预先注册了相应的服务描述信息,这些指导ServiceProvider正确实施服务提供操作的服务描述体现为如下一个ServiceDescriptor类型。

public ServiceDescriptor(Type serviceType,object instance);
   5:        6:  
   8:     public ServiceLifetime                     Lifetime {  get; }
  10:     public Type                                ImplementationType {  get; }
  12:     public Func<IServiceProvider,1)">object>      ImplementationFactory {  get; }      
  13: }

ServiceDescriptor的ServiceType属性代表提供服务的生命类型,由于标准化的服务一般会定义成接口,所以在绝大部分情况下体现为一个接口类型。类型为ServiceLifetime的属性Lifetime体现了ServiceProvider针对服务实例生命周期的控制方式。如下面的代码片段所示,ServiceLifetime是一个美剧类型,定义其中的三个选项(Singleton、Scoped和Transient)体现三种对服务对象生命周期的控制形式,我们将在本节后续部分对此作专门的介绍。

3:     Singleton,
   6: }

3-10

对于ServiceDescriptor的其他三个属性来说,它们实际上是辅助ServiceProvider完成具体的服务实例提供操。ImplementationType属性代表被提供服务实例的真实类型,属性ImplementationInstance则直接代表被提供的服务实例,ImplementationFactory则提供了一个创建服务实例的委托对象。ASP.NET Core与依赖注入相关的几个核心类型具有如图10所示的关系。

由于ASP.NET Core中的ServiceProvider是根据一个代表ServiceDescriptor集合的IServiceCollection对象创建的,当我们调用其GetService方法的时候,它会根据我们提供的服务类型找到对应的ServiceDecriptor对象。如果该ServiceDecriptor对象的ImplementationInstance属性返回一个具体的对象,该对象将直接用作被提供的服务实例。如果ServiceDecriptor对象的ImplementationFactory返回一个具体的委托,该委托对象将直接用作创建服务实例的工厂。

如果这两个属性均为Null,ServiceProvider才会根据ImplementationType属性返回的类型调用相应的构造函数创建被提供的服务实例。至于我们在上面一节中提到的三种依赖注入方式,ServiceProvider仅仅支持构造器注入,属性注入和方法注入的支持并未提供。

二、服务的注册与提供

ASP.NET Core针对依赖注入的编程主要体现在两个方面:其一,创建一个ServiceCollection对象并将服务注册信息以ServiceDescriptor对象的形式添加其中;其二,针对ServiceCollection对象创建对应的ServiceProvider并利用它提供我们需要的服务实例。

在进行服务注册的时候,我们可以直接调用相应的构造函数创建ServiceDescriptor对象并将其添加到ServiceCollection对象之中。除此之外,IServiceCollection接口还具有如下三组扩展方法将这两个步骤合二为一。从下面给出的代码片段我们不难看出这三组扩展方法分别针对上面我们提及的三种针对服务实例的生命周期控制方式,泛型参数TService代表服务的声明类型,即ServiceDescriptor的ServiceType属性,至于ServiceDescriptor的其他属性,则通过方法相应的参数来提供。

4:    //其他AddScoped<TService>重载
   9:     static IServiceCollection AddTransient<TService>(//其他AddTransient<TService>重载
class ServiceProviderExtensions
static T GetService<T>(this IServiceProvider provider);
static T GetRequiredService<T>(   6: }

利用ServiceProvider来提供服务

接下来采用实例演示的方式来介绍如何利用ServiceCollection进行服务注册,以及如何利用ServiceCollection创建对应的ServiceProvider来提供我们需要的服务实例。我们创建一个ASP.NET Core控制台程序,并在project.json中按照如下的方式添加针对 “Microsoft.Extensions.DepedencyInjection”这个NuGet包的依赖。

2:   "dependencies": {
   4:   },1)">   5:   ...
interface IFoo {}
   3: interface IBaz {}
   5: {
   7:     IBar Bar { get; }
   9: }
  11: class Foo : IFoo {}
  13: class Baz : IBaz {}
  14: class Gux : IGux
  15: {
  16:     public IFoo Foo { get; private set; }
  17:     public IBar Bar { get;   18:     public IBaz Baz { get;   19:  
  20:     public Gux(IFoo foo,IBar bar,IBaz baz)
  21:     {
  22:         this.Foo = foo;
  23:         this.Bar = bar;
  24:         this.Baz = baz;
  25:     }
  26: }    

现在我们在作为程序入口的Main方法中创建了一个ServiceCollection对象,并采用不同的方式完成了针对四个服务接口的注册。具体来说,对于正对服务接口IFoo和IGux的ServiceDescriptor来说,我们指定了代表服务真实类型的ImplementationType属性,而对于针对服务接口IBar和IBaz的ServiceDescriptor来说,我们初始化的则是分别代表服务实例和服务工厂的ImplementationInstance个ImplementationFactory属性。由于我们调用的是AddSingleton方法,所以四个ServiceDescriptor的Lifetime属性均为Singleton。

void Main(string[] args)
   5:         IServiceCollection services = new ServiceCollection()
   7:             .AddSingleton<IBar>(new Bar())
   9:             .AddSingleton<IGux,Gux>();
  12:         Console.WriteLine("serviceProvider.GetService<IFoo>(): {0}",serviceProvider.GetService<IFoo>());
  14:         Console.WriteLine("serviceProvider.GetService<IBaz>(): {0}",serviceProvider.GetService<IBaz>());
  16:     }
   1: serviceProvider.GetService<IFoo>(): Foo
   3: serviceProvider.GetService<IBaz>(): Baz
static IEnumerable<T> GetServices<T>(static IEnumerable<object> GetServices(   5: }

值得一提的是,如果ServiceProvider所在的ServiceCollection包含多个具有相同服务类型(对应ServiceType属性)的ServiceDescriptor,当我们调用GetService方法获取单个服务实例的时候,只有最后一个ServiceDescriptor才是有效的,至于其他的ServiceDescriptor,它们只有在获取服务集合的场景下才有意义。

我们通过一个简单的实例来演示如何利用ServiceProvider得到一个包含多个服务实例的集合。我们在一个控制台应用中定义了如下一个服务接口IFoobar,两个服务类型Foo和Bar均实现了这个接口。在作为程序入口的Main方法中,我们将针针对服务类型Foo和Bar的两个ServiceDescriptor添加到创建的ServiceCollection对象中,这两个ServiceDescriptor对象的ServiceType属性均为IFoobar。

9:         IServiceProvider serviceProvider = serviceCollection.BuildServiceProvider();
  11:  
  13:         int index = 1;
  15:         foreach (IFoobar foobar in services)
  17:             Console.WriteLine("{0}: {1}",index++,foobar);
  19:     }
  21:  
  23: class Foo : IFoobar {}
   1: serviceProvider.GetService<IFoobar>(): Bar
   3: 1: Foo
   5:         IServiceProvider serviceProvider = new ServiceCollection().BuildServiceProvider();
   7:         Debug.Assert(   8:     }
   6:             .AddTransient<IFoo,1)">   7:             .AddTransient<IBar,Bar>()
   9:             .BuildServiceProvider();
,IBar>>().Bar);
  14: }
  16: interface IFoobar<T1,T2>
  18:     T1 Foo { get; }
  21:   23:  
  26:     public T1 Foo { get;   27:     public T2 Bar { get;   28:     public Foobar(T1 foo,T2 bar)
  29:     {
  30:           31:           32:     }
  33: }
  34:   35: class Bar : IBar {}

在作为入口程序的Main方法中,我们创建了一个ServiceCollection对象并采用Transient模式注册了上述三个服务接口与对应实现类型之间的映射关系,对于泛型服务IFoobar<T1,T2>/Foobar<T1,T2>来说,我们指定的是不携带具体泛型参数的开放泛型类型IFoobar<,>/Foobar<,>。利用此ServiceCollection创建出对应的ServiceProvider之后,我们调用后者的GetService方法并指定IFoobar<IFoo,IBar>为服务类型。得到的服务对象将会是一个Foobar<Foo,Bar>对象,我们将它的Foo和Bar属性类型输出于控制台上作为验证。该程序执行之后将会在控制台上产生下所示的输出结果。

2: serviceProvider.GetService<IFoobar<IFoo,IBar>>().Bar: Bar

ASP.NET Core中的依赖注入(1):控制反转(IoC)
ASP.NET Core中的依赖注入(2):依赖注入(DI)
ASP.NET Core中的依赖注入(3):服务注册与提取
ASP.NET Core中的依赖注入(4):构造函数的选择与生命周期管理
ASP.NET Core中的依赖注入(5):ServicePrvider实现揭秘【总体设计】
ASP.NET Core中的依赖注入(5):ServicePrvider实现揭秘【解读ServiceCallSite】
ASP.NET Core中的依赖注入(5):ServicePrvider实现揭秘【补充漏掉的细节】

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


在上文中,我介绍了事件驱动型架构的一种简单的实现,并演示了一个完整的事件派发、订阅和处理的流程。这种实现太简单了,百十行代码就展示了一个基本工作原理。然而,要将这样的解决方案运用到实际生产环境,还有很长的路要走。今天,我们就研究一下在事件处理器中,对象生命周期的管理问题。事实上,不仅仅是在事件处理器
上文已经介绍了Identity Service的实现过程。今天我们继续,实现一个简单的Weather API和一个基于Ocelot的API网关。 回顾 《Angular SPA基于Ocelot API网关与IdentityServer4的身份认证与授权(一)》 Weather API Weather
最近我为我自己的应用开发框架Apworks设计了一套案例应用程序,并以Apache 2.0开源,开源地址是:https://github.com/daxnet/apworks-examples,目的是为了让大家更为方便地学习和使用.NET Core、最新的前端开发框架Angular,以及Apwork
HAL(Hypertext Application Language,超文本应用语言)是一种RESTful API的数据格式风格,为RESTful API的设计提供了接口规范,同时也降低了客户端与服务端接口的耦合度。很多当今流行的RESTful API开发框架,包括Spring REST,也都默认支
在前面两篇文章中,我详细介绍了基本事件系统的实现,包括事件派发和订阅、通过事件处理器执行上下文来解决对象生命周期问题,以及一个基于RabbitMQ的事件总线的实现。接下来对于事件驱动型架构的讨论,就需要结合一个实际的架构案例来进行分析。在领域驱动设计的讨论范畴,CQRS架构本身就是事件驱动的,因此,
HAL,全称为Hypertext Application Language,它是一种简单的数据格式,它能以一种简单、统一的形式,在API中引入超链接特性,使得API的可发现性(discoverable)更强,并具有自描述的特点。使用了HAL的API会更容易地被第三方开源库所调用,并且使用起来也很方便
何时使用领域驱动设计?其实当你的应用程序架构设计是面向业务的时候,你已经开始使用领域驱动设计了。领域驱动设计既不是架构风格(Architecture Style),也不是架构模式(Architecture Pattern),它也不是一种软件开发方法论,所以,是否应该使用领域驱动设计,以及什么时候使用
《在ASP.NET Core中使用Apworks快速开发数据服务》一文中,我介绍了如何使用Apworks框架的数据服务来快速构建用于查询和管理数据模型的RESTful API,通过该文的介绍,你会看到,使用Apworks框架开发数据服务是何等简单快捷,提供的功能也非常多,比如对Hypermedia的
在上一讲中,我们已经完成了一个完整的案例,在这个案例中,我们可以通过Angular单页面应用(SPA)进行登录,然后通过后端的Ocelot API网关整合IdentityServer4完成身份认证。在本讲中,我们会讨论在当前这种架构的应用程序中,如何完成用户授权。 回顾 《Angular SPA基于
Keycloak是一个功能强大的开源身份和访问管理系统,提供了一整套解决方案,包括用户认证、单点登录(SSO)、身份联合、用户注册、用户管理、角色映射、多因素认证和访问控制等。它广泛应用于企业和云服务,可以简化和统一不同应用程序和服务的安全管理,支持自托管或云部署,适用于需要安全、灵活且易于扩展的用
3月7日,微软发布了Visual Studio 2017 RTM,与之一起发布的还有.NET Core Runtime 1.1.0以及.NET Core SDK 1.0.0,尽管这些并不是最新版,但也已经从preview版本升级到了正式版。所以,在安装Visual Studio 2017时如果启用了
在上文中,我介绍了如何在Ocelot中使用自定义的中间件来修改下游服务的response body。今天,我们再扩展一下设计,让我们自己设计的中间件变得更为通用,使其能够应用在不同的Route上。比如,我们可以设计一个通用的替换response body的中间件,然后将其应用在多个Route上。 O
不少关注我博客的朋友都知道我在2009年左右开发过一个名为Apworks的企业级应用程序开发框架,旨在为分布式企业系统软件开发提供面向领域驱动(DDD)的框架级别的解决方案,并对多种系统架构风格提供支持。这个框架的开发和维护我坚持了很久,一直到2015年,我都一直在不停地重构这个项目。目前这个项目在
好吧,这个题目我也想了很久,不知道如何用最简单的几个字来概括这篇文章,原本打算取名《Angular单页面应用基于Ocelot API网关与IdentityServer4ʺSP.NET Identity实现身份认证与授权》,然而如你所见,这样的名字实在是太长了。所以,我不得不缩写“单页面应用”几个字
在前面两篇文章中,我介绍了基于IdentityServer4的一个Identity Service的实现,并且实现了一个Weather API和基于Ocelot的API网关,然后实现了通过Ocelot API网关整合Identity Service做身份认证的API请求。今天,我们进入前端开发,设计
Ocelot是ASP.NET Core下的API网关的一种实现,在微服务架构领域发挥了非常重要的作用。本文不会从整个微服务架构的角度来介绍Ocelot,而是介绍一下最近在学习过程中遇到的一个问题,以及如何使用中间件(Middleware)来解决这样的问题。 问题描述 在上文中,我介绍了一种在Angu
在大数据处理和人工智能时代,数据工厂(Data Factory)无疑是一个非常重要的大数据处理平台。市面上也有成熟的相关产品,比如Azure Data Factory,不仅功能强大,而且依托微软的云计算平台Azure,为大数据处理提供了强大的计算能力,让大数据处理变得更为稳定高效。由于工作中我的项目
在上文中,我们讨论了事件处理器中对象生命周期的问题,在进入新的讨论之前,首先让我们总结一下,我们已经实现了哪些内容。下面的类图描述了我们已经实现的组件及其之间的关系,貌似系统已经变得越来越复杂了。其中绿色的部分就是上文中新实现的部分,包括一个简单的Event Store,一个事件处理器执行上下文的接
在之前《在ASP.NET Core中使用Apworks快速开发数据服务》一文的评论部分,.NET大神张善友为我提了个建议,可以使用Compile As a Service的Roslyn为语法解析提供支持。在此非常感激友哥给我的建议,也让我了解了一些Roslyn的知识。使用Roslyn的一个很大的好处
很长一段时间以来,我都在思考如何在ASP.NET Core的框架下,实现一套完整的事件驱动型架构。这个问题看上去有点大,其实主要目标是为了实现一个基于ASP.NET Core的微服务,它能够非常简单地订阅来自于某个渠道的事件消息,并对接收到的消息进行处理,于此同时,它还能够向该渠道发送事件消息,以便