时间序列预测的变压器模型的训练损耗和准确性均下降

如何解决时间序列预测的变压器模型的训练损耗和准确性均下降

我正在使用变压器模型来预测外汇市场。我转换了公开价格数据并计算了每30分钟间隔之间的差额。并将差异转换为代币。通过对差异应用log1.5来获得令牌。我在6年中获得了28种代币。 14-27代表牛市,0-13代币代表熊市。 我在PyTorch中创建了一个转换器模型并应用了数据。

import torch 
import math 
import numpy as np
import copy
from torch import nn
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import ast 
from numpy import load
import torch.nn as nn
import random
import time
import matplotlib.pyplot as plt


class Embedder(nn.Module):
    def __init__(self,vocab_size,d_model):
        super().__init__()
        # print(vocab_size,d_model)
        self.embed = nn.Embedding(vocab_size+1,d_model,padding_idx=0)
    def forward(self,x):
        # print(x.shape)
        # print("Embed",self.embed(x).shape)
        return self.embed(x)

class PositionalEncoder(nn.Module):
    def __init__(self,max_seq_len = 500):
        super().__init__()
        self.d_model = d_model
        
        # create constant 'pe' matrix with values dependant on 
        # pos and i
        pe = torch.zeros(max_seq_len,d_model)
        for pos in range(max_seq_len):
            for i in range(0,2):
                pe[pos,i] = \
                math.sin(pos / (10000 ** ((2 * i)/d_model)))
                pe[pos,i + 1] = \
                math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))
                
        pe = pe.unsqueeze(0)
        self.register_buffer('pe',pe)
 
    
    def forward(self,x):
        x = x * math.sqrt(self.d_model)
        seq_len = x.size(1)
        x = x + torch.autograd.Variable(self.pe[:,:seq_len],requires_grad=False)
        return x

def attention(q,k,v,d_k,mask=None,dropout=None):
    
    scores = torch.matmul(q,k.transpose(-2,-1)) /  math.sqrt(d_k)
    if mask is not None:
        mask = mask.unsqueeze(1)
        scores = scores.masked_fill(mask == 0,-1e9)
        scores = torch.nn.functional.softmax(scores,dim=-1)
    
    if dropout is not None:
        scores = dropout(scores)
        
    output = torch.matmul(scores,v)
    return output


class MultiHeadAttention(nn.Module):
    def __init__(self,heads,dropout = 0.1):
        super().__init__()
        
        self.d_model = d_model
        self.d_k = d_model // heads
        self.h = heads
        
        self.q_linear = nn.Linear(d_model,d_model)
        self.v_linear = nn.Linear(d_model,d_model)
        self.k_linear = nn.Linear(d_model,d_model)
        self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(d_model,d_model)
    
    def forward(self,q,mask=None):
        
        bs = q.size(0)
        
        # perform linear operation and split into h heads
        
        k = self.k_linear(k).view(bs,-1,self.h,self.d_k)
        q = self.q_linear(q).view(bs,self.d_k)
        v = self.v_linear(v).view(bs,self.d_k)
        
        # transpose to get dimensions bs * h * sl * d_model
       
        k = k.transpose(1,2)
        q = q.transpose(1,2)
        v = v.transpose(1,2)
        # calculate attention using function we will define next
        scores = attention(q,self.d_k,mask,self.dropout)
        
        # concatenate heads and put through final linear layer
        concat = scores.transpose(1,2).contiguous()\
        .view(bs,self.d_model)
        
        output = self.out(concat)
    
        return output

class FeedForward(nn.Module):
    def __init__(self,d_ff=512,dropout = 0.1):
        super().__init__() 
        # We set d_ff as a default to 2048
        self.linear_1 = nn.Linear(d_model,d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff,d_model)
    def forward(self,x):
        x = self.dropout(torch.nn.functional.relu(self.linear_1(x)))
        x = self.linear_2(x)
        return x

class Norm(nn.Module):
    def __init__(self,eps = 1e-6):
        super().__init__()
    
        self.size = d_model
        # create two learnable parameters to calibrate normalisation
        self.alpha = nn.Parameter(torch.ones(self.size))
        self.bias = nn.Parameter(torch.zeros(self.size))
        self.eps = eps
    def forward(self,x):
        norm = self.alpha * (x - x.mean(dim=-1,keepdim=True)) \
        / (x.std(dim=-1,keepdim=True) + self.eps) + self.bias
        return norm

class EncoderLayer(nn.Module):
    def __init__(self,dropout = 0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.attn = MultiHeadAttention(heads,d_model)
        self.ff = FeedForward(d_model)
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        
    def forward(self,x,mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn(x2,x2,mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.ff(x2))
        return x
    
class DecoderLayer(nn.Module):
    def __init__(self,dropout=0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.norm_3 = Norm(d_model)
        
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        self.dropout_3 = nn.Dropout(dropout)
        
        self.attn_1 = MultiHeadAttention(heads,d_model)
        self.attn_2 = MultiHeadAttention(heads,d_model)
        self.ff = FeedForward(d_model).cuda()
        # self.ff = FeedForward(d_model)

    def forward(self,e_outputs,src_mask,trg_mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn_1(x2,trg_mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.attn_2(x2,src_mask))
        x2 = self.norm_3(x)
        x = x + self.dropout_3(self.ff(x2))
        return x
# We can then build a convenient cloning function that can generate multiple layers:
def get_clones(module,N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

class Encoder(nn.Module):
    def __init__(self,N,heads):
        super().__init__()
        self.N = N
        self.embed = Embedder(vocab_size,d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(EncoderLayer(d_model,heads),N)
        self.norm = Norm(d_model)
        
    def forward(self,src,mask):
        x = self.embed(src)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x,mask)
        return self.norm(x)
    
class Decoder(nn.Module):
    def __init__(self,d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(DecoderLayer(d_model,N)
        self.norm = Norm(d_model)
    def forward(self,trg,trg_mask):
        x = self.embed(trg)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x,trg_mask)
        return self.norm(x)

class Transformer(nn.Module):
    def __init__(self,src_vocab,trg_vocab,heads):
        super().__init__()
        self.encoder = Encoder(src_vocab,heads)
        self.decoder = Decoder(trg_vocab,heads)
        self.out = nn.Linear(d_model,trg_vocab)

    def forward(self,trg_mask):
        e_outputs = self.encoder(src,src_mask)
        d_output = self.decoder(trg,trg_mask)
        output = self.out(d_output)
        return output


def batchify(data,bsz):
    nbatch = data.size(0) // bsz
    data = data.narrow(0,nbatch * bsz)
    data = data.view(bsz,-1).t().contiguous()
    return data

bptt = 128
class CustomDataLoader:
    def __init__(self,source):
        print("Source",source.shape)
        self.batches = list(range(0,source.size(0) - 2*bptt))
        # random.shuffle(self.batches)
        # print(self.batches)
        self.data = source
        self.sample = random.sample(self.batches,120)

    def batchcount(self):
        return len(self.batches)

    def shuffle_batches(self):
        random.shuffle(self.batches)

    def get_batch_from_batches(self,i):
        if i==0:
            random.shuffle(self.batches)
        ind = self.batches[i]
        seq_len = min(bptt,len(self.data)-1-ind)
        src = self.data[ind:ind+seq_len]
        tar = self.data[ind+seq_len-3:ind+seq_len-3+seq_len+1]
        return src,tar
        
    def get_batch(self,i):
        # print(i,len(self.batches))
        ind = self.sample[i]
        seq_len = min(bptt,len(self.data)-1-ind)
        src = self.data[ind:ind+seq_len]
        tar = self.data[ind+seq_len-3:ind+seq_len-3+seq_len+1]
        # tar = tar.view(-1)
        if(i==len(self.sample)-1):
            random.sample(self.batches,60)
            # print("Data shuffled",self.batches[:10])
        return src,tar

def get_batch(source,i):
    seq_len = min(bptt,len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+seq_len-3:i+seq_len-3+seq_len]
    return data,target

def plot_multiple(data,legend):
    fig,ax = plt.subplots()
    for line in data:
        plt.plot(list(range(len(line))),line)
    plt.legend(legend)
    plt.show()


def plot_subplots(data,legends,name):
    names = ['Accuracy','Loss']
    plt.figure(figsize=(10,5))
    for i in range(len(data)):
        plt.subplot(121+i)
        plt.plot(list(range(0,len(data[i])*3,3)),data[i])
        plt.title(legends[i])
        plt.xlabel("Epochs")
    plt.savefig(name)

def evaluate(eval_model,data_source):
    eval_model.eval() # Turn on the evaluation mode
    total_loss = 0.
    ntokens = 28
    count = 0
    with torch.no_grad():
        cum_loss = 0
        acc_count = 0
        accs = 0
        print(data_source.shape)
        for batch,i in enumerate(range(0,data_source.size(0) - bptt*2,bptt)):
            data,targets = get_batch(data_source,i)
            # data,targets = dataLoader.get_batch(i)
            data = data.transpose(0,1).contiguous()
            targets= targets.transpose(0,1).contiguous()
            trg_input = targets[:,:-1]
            trg_output = targets[:,1:].contiguous().view(-1)
            src_mask,trg_mask = create_masks(data,trg_input)
            output = model(data,trg_input,trg_mask)
            output = output.view(-1,output.size(-1))
            loss = torch.nn.functional.cross_entropy(output,trg_output-1)
            accs += ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))
            # accs += ((torch.argmax(output,dim=1)==targets).sum().item()/output.size(0))
            cum_loss += loss
            count+=1
        # print(epoch,"Loss: ",(cum_loss/count),"Accuracy ",accs/count)

    return cum_loss/ (count),accs/count

def nopeak_mask(size,cuda_enabled):
    np_mask = np.triu(np.ones((1,size,size)),k=1).astype('uint8')
    np_mask =  torch.autograd.Variable(torch.from_numpy(np_mask) == 0)

    if cuda_enabled:
      np_mask = np_mask.cuda()
    return np_mask

def create_masks(src,trg):
    src_mask = (src != 0).unsqueeze(-2)
    if trg is not None:
        trg_mask = (trg != 0).unsqueeze(-2)
        size = trg.size(1) # get seq_len for matrix
        # print("Sequence lenght in mask ",size)
        np_mask = nopeak_mask(size,True)
        # print(np_mask.shape,trg_mask.shape)
        if trg.is_cuda:
            np_mask.cuda()
        trg_mask = trg_mask & np_mask
    else:
        trg_mask = None
    return src_mask,trg_mask

def create_padding_mask(seq):
  seq = tf.cast(tf.math.equal(seq,0),tf.float32)
  
  # add extra dimensions to add the padding
  # to the attention logits.
  return seq[:,tf.newaxis,:]  # (batch_size,1,seq_len)


if __name__ == '__main__':
    data = []
    dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    procsd_data = load("Eavg_open.npy")
    print(set(procsd_data[:,0]))
    train_data =torch.tensor(procsd_data)[:30000*2]
    print(train_data.shape)
    val_data = torch.tensor(procsd_data)[30000*2:35000*2]
    test_data = torch.tensor(procsd_data)[35000*2:]
    train_data = train_data.to(dev)
    val_data = val_data.to(dev)
    test_data = test_data.to(dev)

    # train_data = train_data.transpose(1,0).contiguous()
    # val_data = val_data.transpose(1,0).contiguous()

    batch_size = 32
    ntokens = 28
    train_data = batchify(train_data,batch_size)
    # print(train_data.shape)
    val_data = batchify(val_data,batch_size)
    test_data = batchify(train_data,batch_size)
    # model = Transformer(n_blocks=3,d_model=256,n_heads=8,d_ff=256,dropout=0.5)
    model = Transformer(28,28,64,3,4)
    # model = torch.load("modela")
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)

    model.to(dev)
    criterion = nn.CrossEntropyLoss()
    lr = 0.00001 # learning rate
    
    optim = torch.optim.Adam(model.parameters(),lr=0.0001,betas=(0.9,0.98),eps=1e-9)
    #########training starts###########

    accuracies = []
    lossies = []
    val_loss = []
    val_accuracy = []
    dataLoader = CustomDataLoader(train_data)
    _onehot = torch.eye(29)
    for epoch in range(500):
        count = 0
        cum_loss = 0
        acc_count = 0
        accs = 0
        s = time.time()
        # for i in range(len(range(0,train_data.size(0) - bptt))):
        model.train()
        # dataLoader.shuffle_batches()
        for i in range(300):
            # data,targets = get_batch(train_data,i)
            # d = time.time()
            hh = time.time()
            data,targets = dataLoader.get_batch_from_batches(i)
            data = data.transpose(0,1).contiguous()
            # print(data.shape,targets.shape)
            trg_input = targets[:,1:].contiguous().view(-1)
            # print(data.shape,trg_input.shape)
            src_mask,trg_input)
            # print("Source Mask",src_mask)
            # print("Target Mask",trg_mask)
            output = model(data,trg_mask)
            # output = output.view(-1,28)
            output = output.view(-1,output.size(-1))

            loss = torch.nn.functional.cross_entropy(output,trg_output-1)
            accuracy = ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))
            accs += accuracy
            cum_loss += loss.item();
            loss.backward()
            optim.step()
            model.zero_grad()
            optim.zero_grad()
            print(i," Batch Loss",loss.item()," Batch Accuracy ",accuracy," Time taken ",time.time()-hh)
            
            count+=1
            
        data,targets = None,None
        print(epoch,accs/count," Time Taken: ",time.time()-s)
        if(epoch%3==0):
            lossies.append(cum_loss/count)
            accuracies.append(accs/count)
            legend = ["accuracy","Loss"]
            plot_subplots([accuracies,lossies],legend,"A&L_v1")
            print("Valdata",val_data.shape)
            eval_loss,eval_acc = evaluate(model,val_data)
            val_accuracy.append(eval_acc)
            val_loss.append(eval_loss)
            plot_subplots([val_accuracy,val_loss],"Val A&L_v1")
            print(epoch," Valid_loss: ",eval_loss," Valid_accuracy: ",eval_acc)
            if len(val_loss)>0 and eval_loss < val_loss[-1]:
                val_loss.append(eval_loss)
                torch.save(model,"evalModel")
            else:
                val_loss.append(eval_loss)
                torch.save(model,"evalModel")
        if(epoch%5==0):
            torch.save(model,"modela")

我在训练时得到了以下损失和准确性:

enter image description here

是什么导致这种行为? 我的令牌化方法错了吗? 是否有必要添加任何时间嵌入到数据中?

解决方法

实际上,我在计算准确性时犯了一个小错误。

accuracy = ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))

此处trg_output的令牌标记从1到n,但是用于输出的argmax函数返回的范围是从0到n-1。所以这导致了这个问题。

所以我将上面的行修改为

accuracy = ((torch.argmax(output,dim=1)==(trg_output-1) ).sum().item()/output.size(0))

在评估功能中也应应用相同的内容。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


依赖报错 idea导入项目后依赖报错,解决方案:https://blog.csdn.net/weixin_42420249/article/details/81191861 依赖版本报错:更换其他版本 无法下载依赖可参考:https://blog.csdn.net/weixin_42628809/a
错误1:代码生成器依赖和mybatis依赖冲突 启动项目时报错如下 2021-12-03 13:33:33.927 ERROR 7228 [ main] o.s.b.d.LoggingFailureAnalysisReporter : *************************** APPL
错误1:gradle项目控制台输出为乱码 # 解决方案:https://blog.csdn.net/weixin_43501566/article/details/112482302 # 在gradle-wrapper.properties 添加以下内容 org.gradle.jvmargs=-Df
错误还原:在查询的过程中,传入的workType为0时,该条件不起作用 &lt;select id=&quot;xxx&quot;&gt; SELECT di.id, di.name, di.work_type, di.updated... &lt;where&gt; &lt;if test=&qu
报错如下,gcc版本太低 ^ server.c:5346:31: 错误:‘struct redisServer’没有名为‘server_cpulist’的成员 redisSetCpuAffinity(server.server_cpulist); ^ server.c: 在函数‘hasActiveC
解决方案1 1、改项目中.idea/workspace.xml配置文件,增加dynamic.classpath参数 2、搜索PropertiesComponent,添加如下 &lt;property name=&quot;dynamic.classpath&quot; value=&quot;tru
删除根组件app.vue中的默认代码后报错:Module Error (from ./node_modules/eslint-loader/index.js): 解决方案:关闭ESlint代码检测,在项目根目录创建vue.config.js,在文件中添加 module.exports = { lin
查看spark默认的python版本 [root@master day27]# pyspark /home/software/spark-2.3.4-bin-hadoop2.7/conf/spark-env.sh: line 2: /usr/local/hadoop/bin/hadoop: No s
使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams[&#39;font.sans-serif&#39;] = [&#39;SimHei&#39;] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -&gt; systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping(&quot;/hires&quot;) public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate&lt;String
使用vite构建项目报错 C:\Users\ychen\work&gt;npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-