在 PyTorch 中定义批量大小为 1 的手动排序的 MNIST 数据集

如何解决在 PyTorch 中定义批量大小为 1 的手动排序的 MNIST 数据集

[] :这表示一个批次。例如,如果批次大小为 5,则批次将类似于 [1,4,7,2]。 []的长度表示批量大小。

我想让训练集看起来像这样:

[1] -> [1] -> [1] -> [1] -> [1] -> [7] -> [7] -> [7] -> [7] -> [7] ] -> [3] -> [3] -> [3] -> [3] -> [3] -> ... 以此类推

这意味着首先五个 1(批量大小 = 1),第二个 5 个 7(批量大小 = 1),第三个五个 3(批量大小 = 1)等等......

有人可以给我一个想法吗?

如果有人能解释如何用代码来实现这一点会很有帮助。

谢谢! :)

解决方法

如果您想要一个 DataLoader,您只想为每个样本定义类标签,那么您可以使用 torch.data.utils.Subset 类。尽管它的名字,它不一定需要定义数据集的子集。例如

import torch
import torchvision
import torchvision.transforms as T
from itertools import cycle

mnist = torchvision.datasets.MNIST(root='./',train=True,transform=T.ToTensor())

# not sure what "...and so on" implies,but define this list however you like
target_classes = [1,1,7,3,3]

# create cyclic iterators of indices for each class in MNIST
indices = dict()
for label in torch.unique(mnist.targets).tolist():
    indices[label] = cycle(torch.nonzero(mnist.targets == label).flatten().tolist())

# define the order of indices in the new mnist subset based on target_classes
new_indices = []
for t in target_classes:
    new_indices.append(next(indices[t]))

# create a Subset of MNIST based on new_indices
mnist_modified = torch.utils.data.Subset(mnist,new_indices)
dataloader = torch.utils.data.DataLoader(mnist_modified,batch_size=1,shuffle=False)

for idx,(x,y) in enumerate(dataloader):
    # training loop
    print(f'Batch {idx+1} labels: {y.tolist()}')
,

如果您想要一个 DataLoader 在同一类的一行中返回五个样本,但您不想手动为每个索引定义类,那么您可以创建一个自定义采样器。例如

import torch
import torchvision
import torchvision.transforms as T
from itertools import cycle

class RepeatClassSampler(torch.utils.data.Sampler):
    def __init__(self,targets,repeat_count,length,shuffle=False):
        if not torch.is_tensor(targets):
            targets = torch.tensor(targets)

        self.targets = targets
        self.repeat_count = repeat_count
        self.length = length
        self.shuffle = shuffle

        self.classes = torch.unique(targets).tolist()
        self.class_indices = dict()
        for label in self.classes:
            self.class_indices[label] = torch.nonzero(targets == label).flatten() 

    def __iter__(self):
        class_index_iters = dict()
        for label in self.classes:
            if self.shuffle:
                class_index_iters[label] = cycle(self.class_indices[label][torch.randperm(len(self.class_indices))].tolist())
            else:
                class_index_iters[label] = cycle(self.class_indices[label].tolist())

        if self.shuffle:
            target_iter = cycle(self.targets[torch.randperm(len(self.targets))].tolist())
        else:
            target_iter = cycle(self.targets.tolist())

        def index_generator():
            for i in range(self.length):
                if i % self.repeat_count == 0:
                    current_class = next(target_iter)
                yield next(class_index_iters[current_class])
    
        return index_generator()

    def __len__(self):
        return self.length


mnist = torchvision.datasets.MNIST(root='./',transform=T.ToTensor())
dataloader = torch.utils.data.DataLoader(
        mnist,sampler=RepeatClassSampler(
            targets=mnist.targets,repeat_count=5,length=15,# How many total to pick from your dataset
            shuffle=True))

for idx,y) in enumerate(dataloader):
    # training loop
    print(f'Batch {idx+1} labels: {y.tolist()}')

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


依赖报错 idea导入项目后依赖报错,解决方案:https://blog.csdn.net/weixin_42420249/article/details/81191861 依赖版本报错:更换其他版本 无法下载依赖可参考:https://blog.csdn.net/weixin_42628809/a
错误1:代码生成器依赖和mybatis依赖冲突 启动项目时报错如下 2021-12-03 13:33:33.927 ERROR 7228 [ main] o.s.b.d.LoggingFailureAnalysisReporter : *************************** APPL
错误1:gradle项目控制台输出为乱码 # 解决方案:https://blog.csdn.net/weixin_43501566/article/details/112482302 # 在gradle-wrapper.properties 添加以下内容 org.gradle.jvmargs=-Df
错误还原:在查询的过程中,传入的workType为0时,该条件不起作用 <select id="xxx"> SELECT di.id, di.name, di.work_type, di.updated... <where> <if test=&qu
报错如下,gcc版本太低 ^ server.c:5346:31: 错误:‘struct redisServer’没有名为‘server_cpulist’的成员 redisSetCpuAffinity(server.server_cpulist); ^ server.c: 在函数‘hasActiveC
解决方案1 1、改项目中.idea/workspace.xml配置文件,增加dynamic.classpath参数 2、搜索PropertiesComponent,添加如下 <property name="dynamic.classpath" value="tru
删除根组件app.vue中的默认代码后报错:Module Error (from ./node_modules/eslint-loader/index.js): 解决方案:关闭ESlint代码检测,在项目根目录创建vue.config.js,在文件中添加 module.exports = { lin
查看spark默认的python版本 [root@master day27]# pyspark /home/software/spark-2.3.4-bin-hadoop2.7/conf/spark-env.sh: line 2: /usr/local/hadoop/bin/hadoop: No s
使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -> systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping("/hires") public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate<String
使用vite构建项目报错 C:\Users\ychen\work>npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-