CentOS7.0安装配置redis集群

1.redis集群简介

redis集群在启动的时候就自动在多个节点间分好片。同时提供了分片之间的可用性:当一部分redis节点故障或网络中断,集群也能继续工作。但是,当大面积的节点故障或网络中断(比如大部分的主节点都不可用了),集群就不能使用。
所以,从实用性的角度,Redis集群提供以下功能:
● 自动把数据切分到多个redis节点中
● 当一部分节点挂了或不可达,集群依然能继续工作

2.redis集群数据分片

Redis集群不是使用一致性哈希,而是使用哈希槽。整个redis集群有16384个哈希槽,决定一个key应该分配到那个槽的算法是:计算该key的CRC16结果再模16834。
集群中的每个节点负责一部分哈希槽,比如集群中有3个节点,则:
● 节点A存储的哈希槽范围是:0 – 5500
● 节点B存储的哈希槽范围是:5501 – 11000
● 节点C存储的哈希槽范围是:11001 – 16384
这样的分布方式方便节点的添加和删除。比如,需要新增一个节点D,只需要把A、B、C中的部分哈希槽数据移到D节点。同样,如果希望在集群中删除A节点,只需要把A节点的哈希槽的数据移到B和C节点,当A节点的数据全部被移走后,A节点就可以完全从集群中删除。
因为把哈希槽从一个节点移到另一个节点是不需要停机的,所以,增加或删除节点,或更改节点上的哈希槽,也是不需要停机的。
如果多个key都属于一个哈希槽,集群支持通过一个命令(或事务,或lua脚本)同时操作这些key。通过“哈希标签”的概念,用户可以让多个key分配到同一个哈希槽。哈希标签在集群详细文档中有描述,这里做个简单介绍:如果key含有大括号”{}”,则只有大括号中的字符串会参与哈希,比如”this{foo}”和”another{foo}”这2个key会分配到同一个哈希槽,所以可以在一个命令中同时操作他们。

3.redis的主从模式

为了保证在部分节点故障或网络不通时集群依然能正常工作,集群使用了主从模型,每个哈希槽有一(主节点)到N个副本(N-1个从节点)。在我们刚才的集群例子中,有A,B,C三个节点,如果B节点故障集群就不能正常工作了,因为B节点中的哈希槽数据没法操作。但是,如果我们给每一个节点都增加一个从节点,就变成了:A,C三个节点是主节点,A1,B1,C1 分别是他们的从节点,当B节点宕机时,我们的集群也能正常运作。B1节点是B节点的副本,如果B节点故障,集群会提升B1为主节点,从而让集群继续正常工作。但是,如果B和B1同时故障,集群就不能继续工作了。
Redis集群的一致性保证
Redis集群不能保证强一致性。一些已经向客户端确认写成功的操作,会在某些不确定的情况下丢失。
产生写操作丢失的第一个原因,是因为主从节点之间使用了异步的方式来同步数据。
一个写操作是这样一个流程:
1)客户端向主节点B发起写的操作2)主节点B回应客户端写操作成功3)主节点B向它的从节点B1,B2,B3同步该写操作
从上面的流程可以看出来,主节点B并没有等从节点B1,B3写完之后再回复客户端这次操作的结果。所以,如果主节点B在通知客户端写操作成功之后,但同步给从节点之前,主节点B故障了,其中一个没有收到该写操作的从节点会晋升成主节点,该写操作就这样永远丢失了。
就像传统的数据库,在不涉及到分布式的情况下,它每秒写回磁盘。为了提高一致性,可以在写盘完成之后再回复客户端,但这样就要损失性能。这种方式就等于Redis集群使用同步复制的方式。
基本上,在性能和一致性之间,需要一个权衡。

4. 创建和使用redis集群

4.1.下载redis文件

[root@apollo dtadmin]# wget http://download.redis.io/releases/redis-3.2.9.tar.gz

4.2.解压redis到/opt/目录下

[root@apollo dtadmin]# tar -zxvf redis-3.2.9.tar.gz -C /opt/

4.3.编译redis

#进入目录/opt/redis-3.2.9
[root@apollo dtadmin]# cd /opt/redis-3.2.9/
[root@artemis redis-3.2.9]# make && make install #如果报错,说明缺少依赖包,要先执行以下命令
[root@artemis redis-cluster]# yum -y install ruby ruby-devel rubygems rpm-build gcc

4.4.配置redis集群

4.4.1.环境准备

# hostname ip software port notes
1 apollo.dt.com 192.168.56.181 redis 7000
7001
7002
2 artemis.dt.com 192.168.56.182 redis 7003
7004
7005
3 uranus.dt.com 192.168.56.183 redis 7006
7007
7008

4.4.2 在/opt/redis-3.2.9/目录下创建目录redis-cluster

#创建目录redis-cluster
[root@apollo redis-3.2.9]# mkdir redis-cluster
#在redis-cluster目录下创建三个子目录
[root@apollo redis-cluster]# mkdir -p 7000 7001 7002
#把/opt/redis-3.2.9目录下的redis.conf分别拷贝一份到7000,70017002目录下:
[root@apollo redis-cluster]# cp /opt/redis-3.2.9/redis.conf /opt/redis-3.2.9/redis-cluster/7000
[root@apollo redis-cluster]# cp /opt/redis-3.2.9/redis.conf /opt/redis-3.2.9/redis-cluster/7001
[root@apollo redis-cluster]# cp /opt/redis-3.2.9/redis.conf /opt/redis-3.2.9/redis-cluster/7002

4.4.3.配置子目录/opt/redis-3.2.9/redis-cluster/目录下三个子目录7000,7001和7002下的redis.conf文件,主要修改内容为:

[root@apollo redis-cluster]# vim 7000/redis.conf 
[root@apollo redis-cluster]# vim 7001/redis.conf 
[root@apollo redis-cluster]# vim 7002/redis.conf 
###############配置修改项########################
bind 192.168.56.181 #修改为本机IP
port 7000 #要根据所在的子目录下配置
daemonize yes
pidfile /var/run/redis_7000.pid  #要根据所在的子目录下配置
logfile "/var/log/redis-7000.log" #要根据所在的子目录下配置
appendonly yes
cluster-enabled yes
cluster-config-file nodes-7000.conf #要根据所在的子目录下配置
cluster-node-timeout 15000

4.4.4.以相同方法配置其它两台务器

不同的是要用7003,7004,7005,7006,7007,7008端口号并创建相应的子目录。

5.启动redis集群

5.1.在第一台服务器上启动redis

[root@apollo redis-cluster]# redis-server 7001/redis.conf 
[root@apollo redis-cluster]# redis-server 7002/redis.conf 
[root@apollo redis-cluster]# redis-server 7003/redis.conf 

5.2.在第二台机器启动redis

[root@artemis redis-cluster]# redis-server 7003/redis.conf 
[root@artemis redis-cluster]# redis-server 7004/redis.conf 
[root@artemis redis-cluster]# redis-server 7005/redis.conf 

5.3 在第三台服务器上启动redis

[root@uranus redis-cluster]# redis-server 7006/redis.conf 
[root@uranus redis-cluster]# redis-server 7007/redis.conf 
[root@uranus redis-cluster]# redis-server 7008/redis.conf 

6.验证各个服务器上的redis启动状态

6.1.第一台服务器

[root@apollo redis-cluster]# ps -ef | grep redis
root     18313     1  0 16:44 ?        00:00:00 redis-server 192.168.56.181:7001 [cluster]
root     18325     1  0 16:44 ?        00:00:00 redis-server 192.168.56.181:7002 [cluster]
root     18371     1  0 16:45 ?        00:00:00 redis-server 192.168.56.181:7000 [cluster]
root     18449  2564  0 16:46 pts/0    00:00:00 grep --color=auto redis

[root@apollo redis-cluster]# netstat -tnlp | grep redis
tcp        0      0 192.168.56.181:7001     0.0.0.0:*               LISTEN      18313/redis-server  
tcp        0      0 192.168.56.181:7002     0.0.0.0:*               LISTEN      18325/redis-server  
tcp        0      0 192.168.56.181:17000    0.0.0.0:*               LISTEN      18371/redis-server  
tcp        0      0 192.168.56.181:17001    0.0.0.0:*               LISTEN      18313/redis-server  
tcp        0      0 192.168.56.181:17002    0.0.0.0:*               LISTEN      18325/redis-server  
tcp        0      0 192.168.56.181:7000     0.0.0.0:*               LISTEN      18371/redis-server

6.2.第二台服务器

[root@artemis redis-cluster]# ps -ef | grep redis
root      5351     1  0 16:45 ?        00:00:00 redis-server 192.168.56.182:7003 [cluster]
root      5355     1  0 16:45 ?        00:00:00 redis-server 192.168.56.182:7004 [cluster]
root      5359     1  0 16:46 ?        00:00:00 redis-server 192.168.56.182:7005 [cluster]

[root@artemis redis-cluster]# netstat -tnlp | grep redis
tcp        0      0 192.168.56.182:7003     0.0.0.0:*               LISTEN      5351/redis-server 1 
tcp        0      0 192.168.56.182:7004     0.0.0.0:*               LISTEN      5355/redis-server 1 
tcp        0      0 192.168.56.182:7005     0.0.0.0:*               LISTEN      5359/redis-server 1 
tcp        0      0 192.168.56.182:17003    0.0.0.0:*               LISTEN      5351/redis-server 1 
tcp        0      0 192.168.56.182:17004    0.0.0.0:*               LISTEN      5355/redis-server 1 
tcp        0      0 192.168.56.182:17005    0.0.0.0:*               LISTEN      5359/redis-server 1

6.3.第三台服务器

[root@uranus redis-cluster]# ps -ef | grep redis
root     21138     1  0 16:46 ?        00:00:00 redis-server 192.168.56.183:7006 [cluster]
root     21156     1  0 16:46 ?        00:00:00 redis-server 192.168.56.183:7008 [cluster]
root     21387     1  0 16:50 ?        00:00:00 redis-server 192.168.56.183:7007 [cluster]
root     21394  9287  0 16:50 pts/0    00:00:00 grep --color=auto redis

[root@uranus redis-cluster]# netstat -tnlp | grep redis
tcp        0      0 192.168.56.183:7006     0.0.0.0:*               LISTEN      2959/redis-server 1 
tcp        0      0 192.168.56.183:7007     0.0.0.0:*               LISTEN      2971/redis-server 1 
tcp        0      0 192.168.56.183:7008     0.0.0.0:*               LISTEN      2982/redis-server 1 
tcp        0      0 192.168.56.183:17006    0.0.0.0:*               LISTEN      2959/redis-server 1 
tcp        0      0 192.168.56.183:17007    0.0.0.0:*               LISTEN      2971/redis-server 1 
tcp        0      0 192.168.56.183:17008    0.0.0.0:*               LISTEN      2982/redis-server 1

7.创建redis集群

[root@apollo src]# ./redis-trib.rb create --replicas 1 192.168.56.181:7000 192.168.56.181:7001 192.168.56.181:7002 192.168.56.182:7003 192.168.56.182:7004 192.168.56.182:7005 192.168.56.183:7006 192.168.56.183:7007 192.168.56.183:7008 >>> Creating cluster >>> Performing hash slots allocation on 9 nodes... Using 4 masters: 192.168.56.181:7000 192.168.56.182:7003 192.168.56.183:7006 192.168.56.181:7001 Adding replica 192.168.56.182:7004 to 192.168.56.181:7000 Adding replica 192.168.56.183:7007 to 192.168.56.182:7003 Adding replica 192.168.56.181:7002 to 192.168.56.183:7006 Adding replica 192.168.56.182:7005 to 192.168.56.181:7001 Adding replica 192.168.56.183:7008 to 192.168.56.181:7000 M: 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 192.168.56.181:7000 slots:0-4095 (4096 slots) master M: 0d0b4528f32db0111db2a78b8451567086b66d97 192.168.56.181:7001 slots:12288-16383 (4096 slots) master S: e7b8ba7a800683ba017401bde9a72bb34ad252d8 192.168.56.181:7002 replicates 3b9056e1c92ee9b94870a4100b89f6dc474ec1fa M: 4b34dcec53e46ad990b0e6bc36d5cd7b7f3f4cce 192.168.56.182:7003 slots:4096-8191 (4096 slots) master S: 13863d63aa323fd58e7ceeba1ccc91b6304d0539 192.168.56.182:7004 replicates 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 S: da3556753efe388a64fafc259338ea420a795163 192.168.56.182:7005 replicates 0d0b4528f32db0111db2a78b8451567086b66d97 M: 3b9056e1c92ee9b94870a4100b89f6dc474ec1fa 192.168.56.183:7006 slots:8192-12287 (4096 slots) master S: ab90ee3ff9834a88416da311011e9bdfaa9a831f 192.168.56.183:7007 replicates 4b34dcec53e46ad990b0e6bc36d5cd7b7f3f4cce S: b0dda91a2527f71fe555cdd28fa8be4b571a4bed 192.168.56.183:7008 replicates 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 Can I set the above configuration? (type 'yes' to accept): yes >>> Nodes configuration updated >>> Assign a different config epoch to each node >>> Sending CLUSTER MEET messages to join the cluster Waiting for the cluster to join........ >>> Performing Cluster Check (using node 192.168.56.181:7000) M: 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 192.168.56.181:7000 slots:0-4095 (4096 slots) master 2 additional replica(s) S: e7b8ba7a800683ba017401bde9a72bb34ad252d8 192.168.56.181:7002 slots: (0 slots) slave replicates 3b9056e1c92ee9b94870a4100b89f6dc474ec1fa S: ab90ee3ff9834a88416da311011e9bdfaa9a831f 192.168.56.183:7007 slots: (0 slots) slave replicates 4b34dcec53e46ad990b0e6bc36d5cd7b7f3f4cce M: 4b34dcec53e46ad990b0e6bc36d5cd7b7f3f4cce 192.168.56.182:7003 slots:4096-8191 (4096 slots) master 1 additional replica(s) M: 0d0b4528f32db0111db2a78b8451567086b66d97 192.168.56.181:7001 slots:12288-16383 (4096 slots) master 1 additional replica(s) M: 3b9056e1c92ee9b94870a4100b89f6dc474ec1fa 192.168.56.183:7006 slots:8192-12287 (4096 slots) master 1 additional replica(s) S: b0dda91a2527f71fe555cdd28fa8be4b571a4bed 192.168.56.183:7008 slots: (0 slots) slave replicates 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 S: 13863d63aa323fd58e7ceeba1ccc91b6304d0539 192.168.56.182:7004 slots: (0 slots) slave replicates 4d007a1e8efdc43ca4ec3db77029709b4e8413d0 S: da3556753efe388a64fafc259338ea420a795163 192.168.56.182:7005 slots: (0 slots) slave replicates 0d0b4528f32db0111db2a78b8451567086b66d97 [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


linux下开机自启: 在/etc/init.d目录下新建文件elasticsearch 并敲入shell脚本: 注意, 前两行必须填写,且要注释掉。 第一行为shell前行代码,目的告诉系统使用shell。 第二行分别代表运行级别、启动优先权、关闭优先权,且后面添加开机服务会用到。 shell脚本
1、因为在centos7中/etc/rc.d/rc.local的权限被降低了,所以需要赋予其可执行权 chmod +x /etc/rc.d/rc.local 2、赋予脚本可执行权限假设/usr/local/script/autostart.sh是你的脚本路径,给予执行权限 chmod +x /usr
最简单的查看方法可以使用ls -ll、ls-lh命令进行查看,当使用ls -ll,会显示成字节大小,而ls- lh会以KB、MB等为单位进行显示,这样比较直观一些。 通过命令du -h –max-depth=1 *,可以查看当前目录下各文件、文件夹的大小,这个比较实用。 查询当前目录总大小可以使用d
ASP.NET Core应用程序发布linux在shell中运行是正常的。可一但shell关闭网站也就关闭了,所以要配置守护进程, 用的是Supervisor,本文主要记录配置的过程和过程遇到的问题 安装Supervisor 1 yum install python-setuptools
设置时区(CentOS 7) 先执行命令timedatectl status|grep 'Time zone'查看当前时区,如果不是时区(Asia/Shanghai),则需要先设置为中国时区,否则时区不同会存在时差。 #已经是Asia/Shanghai,则无需设置 [root@xia
vim /etc/sysconfig/network-scripts/ifcfg-eth0 BOOTPROTO="static" ONBOOT=yes IPADDR=192.168.8.106 NETMASK=255.255.252.0 GATEWAY=192.168.
一、安装gcc依赖 由于 redis 是用 C 语言开发,安装之前必先确认是否安装 gcc 环境(gcc -v),如果没有安装,执行以下命令进行安装 [root@localhost local]# yum install -y gcc 二、下载并解压安装包 [root@localhost local
第一步 On CentOS/RHEL 6.*: $ sudo rpm -Uvh http://li.nux.ro/download/nux/dextop/el6/x86_64/nux-dextop-release-0-2.el6.nux.noarch.rpm On CentOS/RHEL 7: $
/// <summary> /// 取小写文件名后缀 /// </summary> /// <param name="name">文件名</param> /// <returns>返回小写后缀,不带“.”</ret
which nohup .bash_profile中并source加载 如果没有就安装吧 yum provides */nohup nohup npm run start & nohup ./kibana &
1.1 MySQL安装 1.1.1 下载wget命令 yum -y install wget 1.1.2 在线下载mysql安装包 wget https://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm 1.1.3 安装My
重启 reboot shutdown -r now init 6 关闭 init 0 shutdown -h now shutdown -h 20:25 #8点25关机查看内存 free CPU利用率 top 日期 date 设置时间 date 033017002015 #月日时间年 日历 cal
1、firewalld的基本使用 启动: systemctl start firewalld 关闭: systemctl stop firewalld 查看状态: systemctl status firewalld 开机禁用 : systemctl disable firewalld 开机启用 :
1 下载并安装MySQL官方的 Yum Repository wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 使用上面的命令就直接下载了安装用的Yum Repository,大概
CentOS6.x CentOS6中转用Upstrat代替以前的init.d/rcX.d的线性启动方式。 一、相关命令 通过initctl help可以查看相关命令 [root@localhost ~]# initctl help Job commands: start Start job. sto
1、使用命令:df -lk 找到已满磁盘 2、使用命令:du --max-depth=1 -h 查找大文件,删除
ifconfig:查看网卡信息 网卡配置文件位置: /etc/sysconfig/network-scripts/文件夹 nmtui:配置网卡 netstat -tlunp:查看端口信息 端口信息存储位置: /etc/services文件 route:查看路由信息 wget:下载网路文件,例如 wg
ps -ef:查看所有进程, ps -ef |grap firewalld 查看与firewalld相关的进程 which :查看进程:which firewalld kill 进程id:杀掉进程 kill 640,强制杀:kill -9 640 man:查看帮助,例如 man ps 查看
useradd:添加用户 useradd abc,默认添加一个abc组 vipw:查看系统中用户 groupadd:添加组groupadd ccna vigr:查看系统中的组 gpasswd:将用户abc添加到ccna组 gpasswd -a abc ccna groups abc:查看用户abc属