python – 如何在pandas中将n * m DataFrame与1 * m DataFrame相乘?

我有2个pandas DataFrame,我想成倍增加:

frame_score: 
   Score1  Score2
0     100      80
1    -150      20
2    -110      70
3     180      99
4     125      20

frame_weights: 
   Score1  Score2
0     0.6     0.4

我试过了:

import pandas as pd
import numpy as np

frame_score = pd.DataFrame({'Score1'  : [100, -150, -110, 180, 125], 
                      'Score2'  : [80,  20, 70, 99, 20]})

frame_weights = pd.DataFrame({'Score1': [0.6], 'Score2' : [0.4]})

print('frame_score: \n{0}'.format(frame_score))
print('\nframe_weights: \n{0}'.format(frame_weights))

# Each of the following alternatives yields the same results
frame_score_weighted = frame_score.mul(frame_weights, axis=0)
frame_score_weighted = frame_score * frame_weights
frame_score_weighted = frame_score.multiply(frame_weights, axis=1)

print('\nframe_score_weighted: \n{0}'.format(frame_score_weighted))

收益:

frame_score_weighted:   
    Score1  Score2
0    60.0    32.0
1     NaN     NaN
2     NaN     NaN
3     NaN     NaN
4     NaN     NaN

行1至4是NaN.我怎么能避免这种情况?例如,第1行应为-90 8(-90 = -150 * 0.6; 8 = 20 * 0.4).

例如,Numpy可以广播以匹配尺寸.

解决方法:

编辑:对于任意维度,尝试使用值以类似数组的方式处理数据帧的值:

# element-wise multiplication
frame_score_weighted = frame_score.values*frame_weights.values

# change to pandas dataframe and rename columns
frame_score_weighted = pd.DataFrame(data=frame_score_weighted, columns=['Score1','Score2'])

#Out: 
   Score1  Score2
0    60.0    32.0
1   -90.0     8.0
2   -66.0    28.0
3   108.0    39.6
4    75.0     8.0

只需使用一些额外的索引,以确保在进行乘法时提取所需的权重作为标量.

frame_score['Score1'] = frame_score['Score1']*frame_weights['Score1'][0]
frame_score['Score2'] = frame_score['Score2']*frame_weights['Score2'][0]

frame_score
#Out: 
   Score1  Score2
0    60.0    32.0
1   -90.0     8.0
2   -66.0    28.0
3   108.0    39.6
4    75.0     8.0

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐