《设计模式之禅》之适配器模式

适配器模式的定义

将一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。

适配器模式的三个角色:

1.Target目标角色

该角色定义把其他类转换为何种接口,也就是我们的期望接口。

2.Adapter源角色

你想把谁转换成目标角色,这个”谁”就是源角色,它是已经存在的、运行良好的类或对象,经过适配器角色的包装,它会成为一个崭新、靓丽的角色。

3.Adapter适配器角色

适配器模式的核心角色,其他两个角色都是已经存在的角色,而适配器角色是需要新建立的,它的职责非常简单:把源角色转换为目标角色,怎么转换?通过继承或是类关联的方式。

适配器模式的应用

1.适配器模式的优点

  • 适配器模式可以让两个没有任何关系的类在一起运行,只要适配器这个角色能够搞定他们就成。
  • 增加类的透明性(我们访问的Target目标角色,但是具体的实现都委托给源角色,而这些对高层次模块是透明的,也是它不需要关心的)
  • 提高类的复用度(源角色在原有的系统中还是可以正常使用,而在模板角色中也可以充当新的演员)
  • 灵活性非常好(某一天,突然不想要适配器,没问题,删除掉这个适配器就可以了,其他的代码都不用修改,基本上就类似一个灵活地构件,想用就用,不用就卸载)

2.适配器模式的使用场景

适配器应用的场景只要记住一点:
你有动机修改一个已经投产中的接口时,适配器模式可能是最适合你的模式。

比如系统扩展了,需要使用一个已有或新建立的类,但这个类又不符合系统的接口?这时使用适配器模式就能解决这个问题。

3.适配器模式的注意事项

适配器模式最好在详细设计阶段不要考虑它,它不是为了解决还处在开发阶段的问题,而是解决正在服役的项目问题,没有一个系统分析师会在做详细设计的时候考虑使用适配器模式。

着重提醒:项目一定要遵守依赖倒置原则和里氏替换原则,否则即使在适合使用适配器的场合下,也会带来非常大的改造。

最佳实践

适配器模式是一个补偿模式,或者说是一个”补救”模式,通常用来解决接口不相容的问题,在百分之百的完美设计中是不可能使用到的。但是实际中是不可能出现这样的设计。

不管系统设计得多么完美,都无法逃避新业务的发生,技术只是一个工具而已,是因为它推动了其他行业的进步和发展而具有价值,通俗地说,技术是为业务服务的,因此业务在日新月异的同时,也对技术提出了同样的要求,在这种要求下,就需要我们有一种或一些这样的补救模式诞生,使用这些补救模式可以保证我们的系统在生命周期内能够稳定、可靠、健壮的运行,而适配器模式就是这样的一个”救世主”,它在需求巨变、业务飞速而导致你极度郁闷、烦躁、崩溃的时候横空出世,它通过把非本系统接口的对象包装成本系统可以接受的对象,从而简化了系统大规模变更风险的存在。

代码例子:
https://github.com/developers-youcong/DesignPatternPractice/tree/master/Adapter

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结