使用pytorch完成kaggle猫狗图像识别方式

kaggle是一个为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台,在这上面有非常多的好项目、好资源可供机器学习、深度学习爱好者学习之用。

碰巧最近入门了一门非常的深度学习框架:pytorch,所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别。

深度学习的基础就是数据,咱们先从数据谈起。此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片。

我们从下载文件里可以看到有两个文件夹:train和test,分别用于训练和测试。以train为例,打开文件夹可以看到非常多的小猫图片,图片名字从0.jpg一直编码到9999.jpg,一共有10000张图片用于训练。

而test中的小猫只有2500张。仔细看小猫,可以发现它们姿态不一,有的站着,有的眯着眼睛,有的甚至和其他可识别物体比如桶、人混在一起。

同时,小猫们的图片尺寸也不一致,有的是竖放的长方形,有的是横放的长方形,但我们最终需要是合理尺寸的正方形。小狗的图片也类似,在这里就不重复了。

紧接着我们了解一下特别适用于图像识别领域的神经网络:卷积神经网络。学习过神经网络的同学可能或多或少地听说过卷积神经网络。这是一种典型的多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。

卷积神经网络通过一系列的方法,成功地将大数据量的图像识别问题不断降维,最终使其能够被训练。CNN最早由Yann LeCun提出并应用在手写体识别上。

一个典型的CNN网络架构如下:

使用pytorch完成kaggle猫狗图像识别方式


这是一个典型的CNN架构,由卷基层、池化层、全连接层组合而成。其中卷基层与池化层配合,组成多个卷积组,逐层提取特征,最终完成分类。

听到上述一连串的术语如果你有点蒙了,也别怕,因为这些复杂、抽象的技术都已经在pytorch中一一实现,我们要做的不过是正确的调用相关函数,

我在粘贴代码后都会做更详细、易懂的解释。

import os
import shutil
import torch
import collections
from torchvision import transforms,datasets
from __future__ import print_function,division
import os
import torch
import pylab
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from skimage import io,transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,utils

# Ignore warnings
import warnings
warnings.filterwarnings("ignore")

plt.ion() # interactive mode

一个正常的CNN项目所需要的库还是蛮多的。

import math
from PIL import Image

class Resize(object):
 """Resize the input PIL Image to the given size.
 Args:
 size (sequence or int): Desired output size. If size is a sequence like
  (h,w),output size will be matched to this. If size is an int,smaller edge of the image will be matched to this number.
  i.e,if height > width,then image will be rescaled to
  (size * height / width,size)
 interpolation (int,optional): Desired interpolation. Default is
  ``PIL.Image.BILINEAR``
 """

 def __init__(self,size,interpolation=Image.BILINEAR):
 # assert isinstance(size,int) or (isinstance(size,collections.Iterable) and len(size) == 2)
 self.size = size
 self.interpolation = interpolation

 def __call__(self,img):
 w,h = img.size

 min_edge = min(img.size)
 rate = min_edge / self.size

 new_w = math.ceil(w / rate)
 new_h = math.ceil(h / rate)

 return img.resize((new_w,new_h))

这个称为Resize的库用于给图像进行缩放操作,本来是不需要亲自定义的,因为transforms.Resize已经实现这个功能了,但是由于目前还未知的原因,我的库里没有提供这个函数,所以我需要亲自实现用来代替transforms.Resize。

如果你的torch里面已经有了这个Resize函数就不用像我这样了。

data_transform = transforms.Compose([
 Resize(84),transforms.CenterCrop(84),transforms.ToTensor(),transforms.Normalize(mean = [0.5,0.5,0.5],std = [0.5,0.5])
])

train_dataset = datasets.ImageFolder(root = 'train/',transform = data_transform)
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size = 4,shuffle = True,num_workers = 4)

test_dataset = datasets.ImageFolder(root = 'test/',transform = data_transform)
test_loader = torch.utils.data.DataLoader(test_dataset,num_workers = 4)

transforms是一个提供针对数据(这里指的是图像)进行转化的操作库,Resize就是上上段代码提供的那个类,主要用于把一张图片缩放到某个尺寸,在这里我们把需求暂定为要把图像缩放到84 x 84这个级别,这个就是可供调整的参数,大家为部署好项目以后可以试着修改这个参数,比如改成200 x 200,你就发现你可以去玩一盘游戏了~_~。

CenterCrop用于从中心裁剪图片,目标是一个长宽都为84的正方形,方便后续的计算。

ToTenser()就比较重要了,这个函数的目的就是读取图片像素并且转化为0-1的数字。

Normalize作为垫底的一步也很关键,主要用于把图片数据集的数值转化为标准差和均值都为0.5的数据集,这样数据值就从原来的0到1转变为-1到1。

class Net(nn.Module):
 def __init__(self):
 super(Net,self).__init__()

 self.conv1 = nn.Conv2d(3,6,5)
 self.pool = nn.MaxPool2d(2,2)
 self.conv2 = nn.Conv2d(6,16,5)
 self.fc1 = nn.Linear(16 * 18 * 18,800)
 self.fc2 = nn.Linear(800,120)
 self.fc3 = nn.Linear(120,2)

 def forward(self,x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1,16 * 18 * 18)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)

 return x

net = Net()

好了,最复杂的一步就是这里了。在这里,我们首先定义了一个Net类,它封装了所以训练的步骤,包括卷积、池化、激活以及全连接操作。

__init__函数首先定义了所需要的所有函数,这些函数都会在forward中调用。我们从conv1说起。conv1实际上就是定义一个卷积层,3,5分别是什么意思?

3代表的是输入图像的像素数组的层数,一般来说就是你输入的图像的通道数,比如这里使用的小猫图像都是彩色图像,由R、G、B三个通道组成,所以数值为3;6代表的是我们希望进行6次卷积,每一次卷积都能生成不同的特征映射数组,用于提取小猫和小狗的6种特征。

每一个特征映射结果最终都会被堆叠在一起形成一个图像输出,再作为下一步的输入;5就是过滤框架的尺寸,表示我们希望用一个5 * 5的矩阵去和图像中相同尺寸的矩阵进行点乘再相加,形成一个值。

定义好了卷基层,我们接着定义池化层。池化层所做的事说来简单,其实就是因为大图片生成的像素矩阵实在太大了,我们需要用一个合理的方法在降维的同时又不失去物体特征,所以深度学习学者们想出了一个称为池化的技术,说白了就是从左上角开始,每四个元素(2 * 2)合并成一个元素,用这一个元素去代表四个元素的值,所以图像体积一下子降为原来的四分之一。

再往下一行,我们又一次碰见了一个卷基层:conv2,和conv1一样,它的输入也是一个多层像素数组,输出也是一个多层像素数组,不同的是这一次完成的计算量更大了,我们看这里面的参数分别是6,16,5。

之所以为6是因为conv1的输出层数为6,所以这里输入的层数就是6;16代表conv2的输出层数,和conv1一样,16代表着这一次卷积操作将会学习小猫小狗的16种映射特征,特征越多理论上能学习的效果就越好,大家可以尝试一下别的值,看看效果是否真的编变好。

conv2使用的过滤框尺寸和conv1一样,所以不再重复。最后三行代码都是用于定义全连接网络的,接触过神经网络的应该就不再陌生了,主要是需要解释一下fc1。

之前在学习的时候比较不理解的也是这一行,为什么是16 * 18 * 18呢?16很好理解,因为最后一次卷积生成的图像矩阵的高度就是16层,那18 * 18是怎么来的呢?我们回过头去看一行代码

transforms.CenterCrop(84)

在这行代码里我们把训练图像裁剪成一个84 * 84的正方形尺寸,所以图像最早输入就是一个3 * 84 * 84的数组。经过第一次5 * 5的卷积之后,我们可以得出卷积的结果是一个6 * 80 * 80的矩阵,这里的80就是因为我们使用了一个5 * 5的过滤框,当它从左上角第一个元素开始卷积后,过滤框的中心是从2到78,并不是从0到79,所以结果就是一个80 * 80的图像了。

经过一个池化层之后,图像尺寸的宽和高都分别缩小到原来的1/2,所以变成40 * 40。

紧接着又进行了一次卷积,和上一次一样,长宽都减掉4,变成36 * 36,然后应用了最后一层的池化,最终尺寸就是18 * 18。

所以第一层全连接层的输入数据的尺寸是16 * 18 * 18。三个全连接层所做的事很类似,就是不断训练,最后输出一个二分类数值。

net类的forward函数表示前向计算的整个过程。forward接受一个input,返回一个网络输出值,中间的过程就是一个调用init函数中定义的层的过程。

F.relu是一个激活函数,把所有的非零值转化成零值。此次图像识别的最后关键一步就是真正的循环训练操作。

import torch.optim as optim

cirterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.0001,momentum = 0.9)

for epoch in range(3):
 running_loss = 0.0

 for i,data in enumerate(train_loader,0):
 inputs,labels = data
 inputs,labels = Variable(inputs),Variable(labels)
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = cirterion(outputs,labels)
 loss.backward()
 optimizer.step()

 running_loss += loss.data[0]

 if i % 2000 == 1999:
  print('[%d %5d] loss: %.3f' % (epoch + 1,i + 1,running_loss / 2000))
  running_loss = 0.0

print('finished training!')
[1 2000] loss: 0.691
[1 4000] loss: 0.687
[2 2000] loss: 0.671
[2 4000] loss: 0.657
[3 2000] loss: 0.628
[3 4000] loss: 0.626
finished training!

在这里我们进行了三次训练,每次训练都是批量获取train_loader中的训练数据、梯度清零、计算输出值、计算误差、反向传播并修正模型。我们以每2000次计算的平均误差作为观察值。可以看到每次训练,误差值都在不断变小,逐渐学习如何分类图像。代码相对性易懂,这里就不再赘述了。

correct = 0
total = 0

for data in test_loader:
 images,labels = data
 outputs = net(Variable(images))
 _,predicted = torch.max(outputs.data,1)
 total += labels.size(0)
 correct += (predicted == labels).sum()

print('Accuracy of the network on the 5000 test images: %d %%' % (100 * correct / total))

终于来到模型准确度验证了,这也是开篇提到的test文件夹的用途之所在。程序到这一步时,net是一个已经训练好的神经网络了。传入一个images矩阵,它会输出相应的分类值,我们拿到这个分类值与真实值做一个比较计算,就可以获得准确率。在我的计算机上当前准确率是66%,在你的机器上可能值有所不同但不会相差太大。

最后我们做一个小总结。在pytorch中实现CNN其实并不复杂,理论性的底层都已经完成封装,我们只需要调用正确的函数即可。当前模型中的各个参数都没有达到相对完美的状态,有兴趣的小伙伴可以多调整参数跑几次,训练结果不出意外会越来越好。

另外,由于在一篇文章中既要阐述CNN,又要贴项目代码会显得没有重点,我就没有两件事同时做,因为网上已经有很多很好的解释CNN的文章了,如果看了代码依然是满头雾水的小伙伴可以先去搜关于CNN的文章,再回过头来看项目代码应该会更加清晰。

第一次写关于自己的神经网络方面的文章,如有写得不好的地方请大家多多见谅。

以上这篇使用pytorch完成kaggle猫狗图像识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用OpenCV实现视频去抖 整体步骤: 设置输入输出视频 寻找帧之间的移动:使用opencv的特征检测器,检测前一帧的特征,并使用Lucas-Kanade光流算法在下一帧跟踪这些特征,根据两组点,将前一个坐标系映射到当前坐标系完成刚性(欧几里得)变换,最后使用数组纪录帧之间的运动。 计算帧之间的平
前言 对中文标题使用余弦相似度算法和编辑距离相似度分析进行相似度分析。 准备数据集part1 本次使用的数据集来源于前几年的硕士学位论文,可根据实际需要更换。结构如下所示: 学位论文题名 基于卷积神经网络的人脸识别研究 P2P流媒体视频点播系统设计和研究 校园网安全体系的设计与实现 无线传感器网络中
前言 之前尝试写过一个爬虫,那时对网页请求还不够熟练,用的原理是:爬取整个html文件,然后根据标签页筛选有效信息。 现在看来这种方式无疑是吃力不讨好,因此现在重新写了一个爬取天气的程序。 准备工作 网上能轻松找到的是 101010100 北京这种编号,而查看中国气象局URL,他们使用的是北京545
前言 本文使用Python实现了PCA算法,并使用ORL人脸数据集进行了测试并输出特征脸,简单实现了人脸识别的功能。 1. 准备 ORL人脸数据集共包含40个不同人的400张图像,是在1992年4月至1994年4月期间由英国剑桥的Olivetti研究实验室创建。此数据集包含40个类,每个类含10张图
前言 使用opencv对图像进行操作,要求:(1)定位银行票据的四条边,然后旋正。(2)根据版面分析,分割出小写金额区域。 图像校正 首先是对图像的校正 读取图片 对图片二值化 进行边缘检测 对边缘的进行霍夫曼变换 将变换结果从极坐标空间投影到笛卡尔坐标得到倾斜角 根据倾斜角对主体校正 import
天气预报API 功能 从中国天气网抓取数据返回1-7天的天气数据,包括: 日期 天气 温度 风力 风向 def get_weather(city): 入参: 城市名,type为字符串,如西安、北京,因为数据引用中国气象网,因此只支持中国城市 返回: 1、列表,包括1-7的天气数据,每一天的分别为一个
数据来源:House Prices - Advanced Regression Techniques 参考文献: Comprehensive data exploration with Python 1. 导入数据 import pandas as pd import warnings warnin
同步和异步 同步和异步是指程序的执行方式。在同步执行中,程序会按顺序一个接一个地执行任务,直到当前任务完成。而在异步执行中,程序会在等待当前任务完成的同时,执行其他任务。 同步执行意味着程序会阻塞,等待任务完成,而异步执行则意味着程序不会阻塞,可以同时执行多个任务。 同步和异步的选择取决于你的程序需
实现代码 import time import pydirectinput import keyboard if __name__ == '__main__': revolve = False while True: time.sleep(0.1) if keyboard.is_pr
本文从多个角度分析了vi编辑器保存退出命令。我们介绍了保存和退出vi编辑器的命令,以及如何撤销更改、移动光标、查找和替换文本等实用命令。希望这些技巧能帮助你更好地使用vi编辑器。
Python中的回车和换行是计算机中文本处理中的两个重要概念,它们在代码编写中扮演着非常重要的角色。本文从多个角度分析了Python中的回车和换行,包括回车和换行的概念、使用方法、使用场景和注意事项。通过本文的介绍,读者可以更好地理解和掌握Python中的回车和换行,从而编写出更加高效和规范的Python代码。
SQL Server启动不了错误1067是一种比较常见的故障,主要原因是数据库服务启动失败、权限不足和数据库文件损坏等。要解决这个问题,我们需要检查服务日志、重启服务器、检查文件权限和恢复数据库文件等。在日常的数据库运维工作中,我们应该时刻关注数据库的运行状况,及时发现并解决问题,以确保数据库的正常运行。
信息模块是一种可重复使用的、可编程的、可扩展的、可维护的、可测试的、可重构的软件组件。信息模块的端接需要从接口设计、数据格式、消息传递、函数调用等方面进行考虑。信息模块的端接需要满足高内聚、低耦合的原则,以保证系统的可扩展性和可维护性。
本文从电脑配置、PyCharm版本、Java版本、配置文件以及程序冲突等多个角度分析了Win10启动不了PyCharm的可能原因,并提供了解决方法。
本文主要从多个角度分析了安装SQL Server 2012时可能出现的错误,并提供了解决方法。
Pycharm是一款非常优秀的Python集成开发环境,它可以让Python开发者更加高效地进行代码编写、调试和测试。在Pycharm中设置解释器非常简单,我们可以通过创建新项目、修改项目解释器、设置全局解释器等多种方式进行设置。
Python中有多种方法可以将字符串转换为整数,包括使用int()函数、try-except语句、正则表达式、map()函数、ord()函数和reduce()函数。在实际应用中,应根据具体情况选择最合适的方法。
本文介绍了导入CSV文件的多种方法,包括使用Excel、Python和R等工具。同时,还介绍了导入CSV文件时需要注意的一些细节和问题。CSV文件是数据处理和分析中不可或缺的一部分,希望本文能够对读者有所帮助。
mongodb是一种新型的数据库,它采用了面向文档的数据模型,具有灵活性、高性能和高可用性等优势。但是,mongodb也存在数据结构混乱、安全性和学习成本高等问题。
当Python运行不了时,我们应该从代码、Python环境、操作系统和硬件设备等多个角度来排查问题,并采取相应的解决措施。