用Python制作简单的朴素基数估计器的教程

假设你有一个很大的数据集,非常非常大,以至于不能全部存入内存。这个数据集中有重复的数据,你想找出有多少重复的数据,但数据并没有排序,由于数据量太大所以排序是不切实际的。你如何来估计数据集中含有多少无重复的数据呢?这在许多应用中是很有用的,比如数据库中的计划查询:最好的查询计划不仅仅取决于总共有多少数据,它也取决于它含有多少无重复的数据。

在你继续读下去之前,我会引导你思考很多,因为今天我们要讨论的算法虽然很简单,但极具创意,它不是这么容易就能想出来的。
一个简单的朴素基数估计器

让我们从一个简单的例子开始吧。假定某人以下列方式来生成数据:

  •     生成 n 个充分分散的随机数
  •     任意地从中选择一些数字,使其重复某次
  •     打乱这些数字

我们怎么估计结果数据集中有多少非重复的数字呢?了解到原来的数据集是随机数,且充分分散,一个非常简单的方法是:找出最小的数字。如果最大的可能的数值是 m,最小的值是 x,我们 可以估计大概有 m/x 个非重复的数字在数据集里面。举个例子,如果我们扫描一个数字在 0 到 1 之间的数据集,发现最小的数字是 0.01。我们有理由猜想可能数据集里大概有 100 个非重复的数字。如果我们找到一个更小的最小值的话,可能包含的数据个数可能就更多了。请注意不管每个数字重复了多少次都没关系,这是很自然的,因为重复多少次并不会影响?min?的输出值.

这个过程的优点是非常直观,但同时它也很不精确。不难举出一个反例:一个只包含少数几个非重复数字的数据集里面有一个很小的数。同样的一个含有许多非重复数字的数据集含有一个比我们想像中更大的最小值,用这种估计方法也会很不精确。最后,很少有数据充分分散充分随机的数据集。但是这个算法原型给了我们一些灵感使得我们有可能达到我们的目的,我们需要更精致一些的算法.
基于概率的计数

第一处改进来来自 Flajolet 和 Martin 的论文 Probabilistic Counting Algorithms for Data Base Applications。 进一步的改进来自 Durand-Flajolet 的论文 LogLog counting of large cardinalities 和 Flajolet et al 的论文 HyperLogLog:The analysis of a near-optimal cardinality estimation algorithm。从一篇论文到另一篇论文来观察想法的产生和改进很有趣,但我的方法稍有不同,我会演示如何从头开始构建并改善一个解决方法,省略了一些原始论文中的算法。有兴趣的读者可以读一下那三篇论文,论文里面包含了大量的数学知识,我这里不会详细探讨.

首先,Flajolet 和 Martin 发现对于任意数据集,我们总可以给出一个好的哈希函数,使得哈希后的数据集可以是我们需要的任意一种排列。甚至充分分散的(伪)随机数也是如此。通过这个简单的灵感,我们可以把我们之前产生的数据集转化为我们想要的数据集,但是这远远还不够.

接下来,他们发现存在更好的估计非重复数个数的方法。部分方法比记录最小的哈希值表现得更好。Flajolet 和 Martin 用的估计方法是计算哈希后的值的首部的 0 字的个数。显然在一个随机的数据集中,平均每 2^k 个元素就出现一个长度为 k 的全为 0 的比特序列。我们要做的就是找出这些序列并记录最长的来估计非重复元素的个数。然而这仍然不是一个很棒的估计器。它最多只能给我们一个 2 的幂的数量的估计。而且不像基于最小值的估计方法,这个方法的方差很大。但在另一个方面,我们的估计需要的空间非常小:为了记录最长 32 比特的前导 0 比特序列,我们只需要一个 5 比特的数字就可以了.

附注:Flajolet-Martin 原先的论文在这里继续讨论了一种基于 bitmap 的过程来获得一个更精确的估计。我不会讨论这个细节因为它马上就会在随后的方法中得到改进。更多细节对于有兴趣的读者可以阅读原论文。

现在我们得到了一个确实比较糟糕的比特式估计方法。我们能做出一些什么改进呢?一个直接的想法是使用多个独立的哈希函数。如果每个哈希函数?输出它自己的随机数据集,我们可以记录最长的前导 0 比特序列。然后在最后我们就可以对其求一个平均值以得到一个更精确的估计。

从实验统计上来看这给了我们一个相当好的结果,但哈希的代价的是很高的。一个更好的方式是一个叫做随机平均的方法。相比使用多个哈希函数,我们仅仅使用一个哈希函数。但是把它的输出进行分割然后使用它的一部分作为桶序号来放到许多桶中一个桶里去。假设我们需要 1024 个值,我们可以使用哈希函数的前 10 个比特值作为桶的序号,然后使用剩下的哈希值来计算前导 0 比特序列。这个方法并不会损失精确度,但是节省了大量的哈希计算.

把我们目前学到的应用一下,这里有一个简单的实现。这和 Durand-Flajolet 的论文中的算法是等价的,为了实现方便和清晰所以我计算的是尾部的 0 比特序列。结果是完全等价的。
 

def trailing_zeroes(num):
 """Counts the number of trailing 0 bits in num."""
 if num == 0:
  return 32 # Assumes 32 bit integer inputs!
 p = 0
 while (num >> p) & 1 == 0:
  p += 1
 return p
 
def estimate_cardinality(values,k):
 """Estimates the number of unique elements in the input set values.
 
 Arguments:
  values:An iterator of hashable elements to estimate the cardinality of.
  k:The number of bits of hash to use as a bucket number; there will be 2**k buckets.
 """
 num_buckets = 2 ** k
 max_zeroes = [0] * num_buckets
 for value in values:
  h = hash(value)
  bucket = h & (num_buckets - 1) # Mask out the k least significant bits as bucket ID
  bucket_hash = h >> k
  max_zeroes[bucket] = max(max_zeroes[bucket],trailing_zeroes(bucket_hash))
 return 2 ** (float(sum(max_zeroes)) / num_buckets) * num_buckets * 0.79402

这很漂亮就像我们描述的一样:我们保持一个计算前导(或尾部)0个数的数组,然后在最后对个数求平均值,如果我们的平均值是 x,我们的估计就是 2^x 乘以桶的个数。前面没有说到 的是这个魔术数 0.79402。数据统计表明我们的程序存在一个可预测的偏差,它会给出一个比实际更大的估计值。这个在 Durand-Flajolet 的论文中导出的魔术常数是用来修正这个偏差的。实际上这个数字随着使用的桶的个数(最大2^64)而发生变化,但是对于更多数目的桶数,它会收敛到我们上面用到的算法的估计数字。大量更多的信息请看完整的论文,包括那个魔术数是怎么导出的。

这个程序给了我们一个非常好的估计,对于 m 个桶来说,平均错误率大概在 1.3/sqrt(m) 左右。所以1024个桶时(),我们大概会有 4% 的期望错误率。为了估计每篇最多 2^27 个数据的数据集每个桶仅需要 5 比特就够了。少于 1 kb 内存,这真的很赞(1024 * 5 = 5120,即 640 字节)!

让我们在一些随机的数据上测试一下它:
 

>>> [100000/estimate_cardinality([random.random() for i in range(100000)],10) for j in range(10)]
[0.9825616152548807,0.9905752876839672,0.979241749110407,1.050662616357679,0.937090578752079,0.9878968276629505,0.9812323203117748,1.0456960262467019,0.9415413413873975,0.9608567203911741]

结果不坏,一些估计超过 4% 的预期偏差,但总而言之结果都很好。如果你自己再尝试一遍这个实验,请注意:Python 内建的 hash() 函数将整数哈希为它们本身。导致运行像 estimate_cardinality(range(10000),10) 这样的会给出偏差很大的结果,因为此时的 hash() 不是一个好的哈希函数。当然使用上述例子中的随机数是没有问题的.
改进准确度:SuperLogLog 和 HyperLogLog

虽然我们已经得到了一个非常好的估计,但它有可能做到更好。Durand 和 Flajolet 发现极端数值会很大地影响估计结果的准确度。通过在求平均前舍弃一些最大值,准确度可以得到提高。特别地,舍弃前 30% 大的桶,仅仅计算 70% 的桶的平均值,精确度可以用 1.30/sqrt(m) 提高到 1.05/sqrt(m)! 这意味着在我们之前的例子中,用 640 字节的状态,平均错误率从 4% 变成了大约 3.2%。但并没增加空间的使用.

最后,Flajolet et al 的论文的贡献就是使用了一个不同类型的平均数。使用调和平均数而不是几何平均数。通过这么做,我们可以把错误率降到 1.04/sqrt(m),同样不增加需要的空间。当然完整的算法要更复杂一点,因为它必须修正小的和大的基数误差。有兴趣的读者应该,可能你已经猜到了,就是去阅读完整的论文.
并行化

这些方案所共有的整齐性使得它们很容易就能并行化。多台机器可以独立地运行同样的哈希函数同样数目的桶。我们在最后只需要把结果结合起来,取每个算法实例中每个桶最大的值就可以了。这不仅很好实现,因为我们最多只需要传输不到 1kb 的数据就可以了,而且和在单台机器上运行的结果是完全一模一样的.
总结

就像我们刚刚讨论过的基数排序算法,使得有可能得到一个非重复数字个数的很好的估计。通常只用不到 1kb 空间。我们可以不依赖数据的种类而使用它,并且可以分布式地在多台机器上工作,机器间的协调和数据的传输达到最小。结果估计数可以用来做许多事情,比如流量监控(多少个独立IP访问过?)和数据库查询优化(我们应该排序然后归并呢还是构造一个哈希表呢?)。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用OpenCV实现视频去抖 整体步骤: 设置输入输出视频 寻找帧之间的移动:使用opencv的特征检测器,检测前一帧的特征,并使用Lucas-Kanade光流算法在下一帧跟踪这些特征,根据两组点,将前一个坐标系映射到当前坐标系完成刚性(欧几里得)变换,最后使用数组纪录帧之间的运动。 计算帧之间的平
前言 对中文标题使用余弦相似度算法和编辑距离相似度分析进行相似度分析。 准备数据集part1 本次使用的数据集来源于前几年的硕士学位论文,可根据实际需要更换。结构如下所示: 学位论文题名 基于卷积神经网络的人脸识别研究 P2P流媒体视频点播系统设计和研究 校园网安全体系的设计与实现 无线传感器网络中
前言 之前尝试写过一个爬虫,那时对网页请求还不够熟练,用的原理是:爬取整个html文件,然后根据标签页筛选有效信息。 现在看来这种方式无疑是吃力不讨好,因此现在重新写了一个爬取天气的程序。 准备工作 网上能轻松找到的是 101010100 北京这种编号,而查看中国气象局URL,他们使用的是北京545
前言 本文使用Python实现了PCA算法,并使用ORL人脸数据集进行了测试并输出特征脸,简单实现了人脸识别的功能。 1. 准备 ORL人脸数据集共包含40个不同人的400张图像,是在1992年4月至1994年4月期间由英国剑桥的Olivetti研究实验室创建。此数据集包含40个类,每个类含10张图
前言 使用opencv对图像进行操作,要求:(1)定位银行票据的四条边,然后旋正。(2)根据版面分析,分割出小写金额区域。 图像校正 首先是对图像的校正 读取图片 对图片二值化 进行边缘检测 对边缘的进行霍夫曼变换 将变换结果从极坐标空间投影到笛卡尔坐标得到倾斜角 根据倾斜角对主体校正 import
天气预报API 功能 从中国天气网抓取数据返回1-7天的天气数据,包括: 日期 天气 温度 风力 风向 def get_weather(city): 入参: 城市名,type为字符串,如西安、北京,因为数据引用中国气象网,因此只支持中国城市 返回: 1、列表,包括1-7的天气数据,每一天的分别为一个
数据来源:House Prices - Advanced Regression Techniques 参考文献: Comprehensive data exploration with Python 1. 导入数据 import pandas as pd import warnings warnin
同步和异步 同步和异步是指程序的执行方式。在同步执行中,程序会按顺序一个接一个地执行任务,直到当前任务完成。而在异步执行中,程序会在等待当前任务完成的同时,执行其他任务。 同步执行意味着程序会阻塞,等待任务完成,而异步执行则意味着程序不会阻塞,可以同时执行多个任务。 同步和异步的选择取决于你的程序需
实现代码 import time import pydirectinput import keyboard if __name__ == '__main__': revolve = False while True: time.sleep(0.1) if keyboard.is_pr
本文从多个角度分析了vi编辑器保存退出命令。我们介绍了保存和退出vi编辑器的命令,以及如何撤销更改、移动光标、查找和替换文本等实用命令。希望这些技巧能帮助你更好地使用vi编辑器。
Python中的回车和换行是计算机中文本处理中的两个重要概念,它们在代码编写中扮演着非常重要的角色。本文从多个角度分析了Python中的回车和换行,包括回车和换行的概念、使用方法、使用场景和注意事项。通过本文的介绍,读者可以更好地理解和掌握Python中的回车和换行,从而编写出更加高效和规范的Python代码。
SQL Server启动不了错误1067是一种比较常见的故障,主要原因是数据库服务启动失败、权限不足和数据库文件损坏等。要解决这个问题,我们需要检查服务日志、重启服务器、检查文件权限和恢复数据库文件等。在日常的数据库运维工作中,我们应该时刻关注数据库的运行状况,及时发现并解决问题,以确保数据库的正常运行。
信息模块是一种可重复使用的、可编程的、可扩展的、可维护的、可测试的、可重构的软件组件。信息模块的端接需要从接口设计、数据格式、消息传递、函数调用等方面进行考虑。信息模块的端接需要满足高内聚、低耦合的原则,以保证系统的可扩展性和可维护性。
本文从电脑配置、PyCharm版本、Java版本、配置文件以及程序冲突等多个角度分析了Win10启动不了PyCharm的可能原因,并提供了解决方法。
本文主要从多个角度分析了安装SQL Server 2012时可能出现的错误,并提供了解决方法。
Pycharm是一款非常优秀的Python集成开发环境,它可以让Python开发者更加高效地进行代码编写、调试和测试。在Pycharm中设置解释器非常简单,我们可以通过创建新项目、修改项目解释器、设置全局解释器等多种方式进行设置。
Python中有多种方法可以将字符串转换为整数,包括使用int()函数、try-except语句、正则表达式、map()函数、ord()函数和reduce()函数。在实际应用中,应根据具体情况选择最合适的方法。
本文介绍了导入CSV文件的多种方法,包括使用Excel、Python和R等工具。同时,还介绍了导入CSV文件时需要注意的一些细节和问题。CSV文件是数据处理和分析中不可或缺的一部分,希望本文能够对读者有所帮助。
mongodb是一种新型的数据库,它采用了面向文档的数据模型,具有灵活性、高性能和高可用性等优势。但是,mongodb也存在数据结构混乱、安全性和学习成本高等问题。
当Python运行不了时,我们应该从代码、Python环境、操作系统和硬件设备等多个角度来排查问题,并采取相应的解决措施。