Python3实现Two-Pass算法检测区域连通性

技术背景

连通性检测是图论中常常遇到的一个问题,我们可以用五子棋的思路来理解这个问题五子棋中,横、竖、斜相邻的两个棋子,被认为是相连接的,而一样的道理,在一个二维的图中,只要在横、竖、斜三个方向中的一个存在相邻的情况,就可以认为图上相连通的。比如以下案例中的python数组,3号元素和5号元素就是相连接的,5号元素和6号元素也是相连接的,因此这三个元素实际上是属于同一个区域的:

array([[0,3,0],[0,5,[6,0]])

而再如下面这个例子,其中的1、2、3三个元素是相连的,4、5、6三个元素也是相连的,但是这两个区域不存在连接性,因此这个网格被分成了两个区域:

array([[1,4],[2,5],[3,6]])

那么如何高效的检测一张图片或者一个矩阵中的所有连通区域并打上标签,就是我们所关注的一个问题。

Two-Pass算法

一个典型的连通性检测的方案是Two-Pass算法,该算法可以用如下的一张动态图来演示:

该算法的核心在于用两次的遍历,为所有的节点打上分区的标签,如果是不同的分区,就会打上不同的标签。其基本的算法步骤可以用如下语言进行概述:

  1. 遍历网格节点,如果网格的上、左、左上三个格点不存在元素,则为当前网格打上新的标签,同时标签编号加一;
  2. 当上、左、左上的网格中存在一个元素时,将该元素值赋值给当前的网格作为标签;
  3. 当上、左、左上的网格中有多个元素时,取最低值作为当前网格的标签;
  4. 在标签赋值时,留意标签上边和左边已经被遍历过的4个元素,将4个元素中的最低值与这四个元素分别添加到Union的数据结构中(参考链接1);
  5. 再次遍历网格节点,根据Union数据结构中的值刷新网格中的标签值,最终得到划分好区域和标签的元素矩阵。

测试数据的生成

这里我们以Python3为例,可以用Numpy来产生一系列随机的0-1矩阵,这里我们产生一个20*20大小的矩阵:

# two_pass.py

import numpy as np
import matplotlib.pyplot as plt

if __name__ == "__main__":
    np.random.seed(1)
    graph = np.random.choice([0,1],size=(20,20))
    print (graph)

    plt.figure()
    plt.imshow(graph)
    plt.savefig('random_bin_graph.png')

执行的输出结果如下:

$ python3 two_pass.py 
[[1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0]
 [0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0]
 [1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0]
 [0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0]
 [1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1]
 [1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0]
 [0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1]
 [1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0]
 [1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0]
 [0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0]
 [0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0]
 [1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1]
 [1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1]
 [1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1]
 [0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1]
 [0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0]
 [0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1]
 [0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0]
 [1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
 [0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1]]

同时会生成一张网格的图片:


其实从这个图片中我们可以看出,图片的上面部分几乎都是连接在一起的,只有最下面存在几个独立的区域。

Two-Pass算法的实现

这里需要说明的是,因为我们并没有使用Union的数据结构,而是只使用了Python的字典数据结构,因此代码写起来会比较冗余而且不是那么美观,但是这里我们主要的目的是先用代解决这一实际问题,因此代码乱就乱一点吧。

# two_pass.py

import numpy as np
import matplotlib.pyplot as plt
from copy import deepcopy

def first_pass(g) -> list:
    graph = deepcopy(g)
    height = len(graph)
    width = len(graph[0])
    label = 1
    index_dict = {}
    for h in range(height):
        for w in range(width):
            if graph[h][w] == 0:
                continue
            if h == 0 and w == 0:
                graph[h][w] = label
                label += 1
                continue
            if h == 0 and graph[h][w-1] > 0:
                graph[h][w] = graph[h][w-1]
                continue
            if w == 0 and graph[h-1][w] > 0:
                if graph[h-1][w] <= graph[h-1][min(w+1,width-1)]:
                    graph[h][w] = graph[h-1][w]
                    index_dict[graph[h-1][min(w+1,width-1)]] = graph[h-1][w]
                elif graph[h-1][min(w+1,width-1)] > 0:
                    graph[h][w] = graph[h-1][min(w+1,width-1)]
                    index_dict[graph[h-1][w]] = graph[h-1][min(w+1,width-1)]
                continue
            if h == 0 or w == 0:
                graph[h][w] = label
                label += 1
                continue
            neighbors = [graph[h-1][w],graph[h][w-1],graph[h-1][w-1],graph[h-1][min(w+1,width-1)]]
            neighbors = list(filter(lambda x:x>0,neighbors))
            if len(neighbors) > 0:
                graph[h][w] = min(neighbors)
                for n in neighbors:
                    if n in index_dict:
                        index_dict[n] = min(index_dict[n],min(neighbors))
                    else:
                        index_dict[n] = min(neighbors)
                continue
            graph[h][w] = label
            label += 1
    return graph,index_dict

def remap(idx_dict) -> dict:
    index_dict = deepcopy(idx_dict)
    for id in idx_dict:
        idv = idx_dict[id]
        while idv in idx_dict:
            if idv == idx_dict[idv]:
                break
            idv = idx_dict[idv]
        index_dict[id] = idv
    return index_dict

def second_pass(g,index_dict) -> list:
    graph = deepcopy(g)
    height = len(graph)
    width = len(graph[0])
    for h in range(height):
        for w in range(width):
            if graph[h][w] == 0:
                continue
            if graph[h][w] in index_dict:
                graph[h][w] = index_dict[graph[h][w]]
    return graph

def flatten(g) -> list:
    graph = deepcopy(g)
    fgraph = sorted(set(list(graph.flatten())))
    flatten_dict = {}
    for i in range(len(fgraph)):
        flatten_dict[fgraph[i]] = i
    graph = second_pass(graph,flatten_dict)
    return graph

if __name__ == "__main__":
    np.random.seed(1)
    graph = np.random.choice([0,20))
    graph_1,idx_dict = first_pass(graph)
    idx_dict = remap(idx_dict)
    graph_2 = second_pass(graph_1,idx_dict)
    graph_3 = flatten(graph_2)
    print (graph_3)

    plt.subplot(131)
    plt.imshow(graph)
    plt.subplot(132)
    plt.imshow(graph_3)
    plt.subplot(133)
    plt.imshow(graph_3>0)
    plt.savefig('random_bin_graph.png')

完整代码的输出如下所示:

$ python3 two_pass.py 
[[1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0]
 [0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0]
 [1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0]
 [0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0]
 [1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1]
 [1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0]
 [0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1]
 [1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0]
 [1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0]
 [0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0]
 [0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0]
 [1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1]
 [1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1]
 [1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1]
 [0 1 0 2 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1]
 [0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0]
 [0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1]
 [0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0]
 [3 0 3 0 4 0 0 0 0 0 0 5 0 0 0 1 0 1 1 0]
 [0 3 3 0 4 0 6 0 7 7 0 0 5 0 0 0 0 0 1 1]]

同样的我们可以看看此时得到的新的图像:


这里我们并列的画了三张图,第一张图是原图,第二张图是划分好区域和标签的图,第三张是对第二张图进行二元化的结果,以确保在运算过程中没有丢失原本的信息。经过确认这个标签的结果划分是正确的,但是因为涉及到一些算法实现的细节,这里我们还是需要展开来介绍一下。

算法的执行流程

if __name__ == "__main__":
    np.random.seed(1)
    graph = np.random.choice([0,idx_dict)
    graph_3 = flatten(graph_2)

这个部分是算法的核心框架,在本文中的算法实现流程为:先用first_pass遍历一遍网格节点,按照上一个章节中介绍的Two-Pass算法打上标签,并获得一个映射关系;然后用remap将上面得到的映射关系做一个重映射,确保每一个级别的映射都对应到了最根部(可以联系参考链接1的内容进行理解,虽然这里没有使用Union的数据结构,但是本质上还是一个树形的结构,需要做一个重映射);然后用second_pass执行Two-Pass算法的第二次遍历,得到一组打上了新的独立标签的网格节点;最后需要用flatten将标签进行压平,因为前面映射的关系,有可能导致标签不连续,所以我们这里又做了一次映射,确保标签是连续变化的,实际应用中可以不使用这一步。

标签的重映射

关于节点的遍历,大家可以直接看算法代码,这里需要额外讲解的是标签的重映射模块的代码:

def remap(idx_dict) -> dict:
    index_dict = deepcopy(idx_dict)
    for id in idx_dict:
        idv = idx_dict[id]
        while idv in idx_dict:
            if idv == idx_dict[idv]:
                break
            idv = idx_dict[idv]
        index_dict[id] = idv
    return index_dict

这里的算法是先对得到的标签进行遍历,在字典中获取当前标索引所对应的值,作为新的索引,直到键跟值一致为止,相当于在一个树形的数据结构中重复寻找父节点直到找到根节点。

其他的测试用例

这里我们可以再额外测试一些案例,比如增加几个0元素使得网格节点更加稀疏:

graph = np.random.choice([0,20))

得到的结果图片如下所示:


还可以再稀疏一些:

graph = np.random.choice([0,20))

得到的结果如下图所示:


越是稀疏的图,得到的分组结果就越分散。

总结概要

在本文中我们主要介绍了利用Two-Pass的算法来检测区域连通性,并给出了Python3的代码实现,当然在实现的过程中因为没有使用到Union这样的数据结构,仅仅用了字典来存储标签之间的关系,因此效率和代码可读性都会低一些,单纯作为用例的演示和小规模区域划分的计算是足够用了。在该代码实现方案中,还有一点与原始算法不一致的是,本实现方案中打新的标签是读取上、上左和左三个方向的格点,但是存储标签的映射关系时,是读取了上、上左、上右和左这四个方向的格点。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/two-pass.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958

参考链接

  1. https://blog.csdn.net/lichengyu/article/details/13986521
  2. https://www.cnblogs.com/riddick/p/8280883.html

原文地址:https://www.cnblogs.com/dechinphy

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


Python中的函数(二) 在上一篇文章中提到了Python中函数的定义和使用,在这篇文章里我们来讨论下关于函数的一些更深的话题。在学习C语言函数的时候,遇到的问题主要有形参实参的区别、参数的传递和改变、变量的作用域。同样在Python中,关于对函数的理解和使用也存在这些问题。下面来逐一讲解。一.函
Python中的字符串 可能大多数人在学习C语言的时候,最先接触的数据类型就是字符串,因为大多教程都是以&quot;Hello world&quot;这个程序作为入门程序,这个程序中要打印的&quot;Hello world&quot;就是字符串。如果你做过自然语言处理方面的研究,并且用Python
Python 面向对象编程(一) 虽然Python是解释性语言,但是它是面向对象的,能够进行对象编程。下面就来了解一下如何在Python中进行对象编程。一.如何定义一个类 在进行python面向对象编程之前,先来了解几个术语:类,类对象,实例对象,属性,函数和方法。 类是对现实世界中一些事物的封装,
Python面向对象编程(二) 在前面一篇文章中谈到了类的基本定义和使用方法,这只体现了面向对象编程的三大特点之一:封装。下面就来了解一下另外两大特征:继承和多态。 在Python中,如果需要的话,可以让一个类去继承一个类,被继承的类称为父类或者超类、也可以称作基类,继承的类称为子类。并且Pytho
Python中的函数(一) 接触过C语言的朋友对函数这个词肯定非常熟悉,无论在哪门编程语言当中,函数(当然在某些语言里称作方法,意义是相同的)都扮演着至关重要的角色。今天就来了解一下Python中的函数用法。一.函数的定义 在某些编程语言当中,函数声明和函数定义是区分开的(在这些编程语言当中函数声明
在windows下如何快速搭建web.py开发框架 用Python进行web开发的话有很多框架供选择,比如最出名的Django,tornado等,除了这些框架之外,有一个轻量级的框架使用起来也是非常方便和顺手,就是web.py。它由一名黑客所创建,但是不幸的是这位创建者于2013年自杀了。据说现在由
将Sublime Text 2搭建成一个好用的IDE 说起编辑器,可能大部分人要推荐的是Vim和Emacs,本人用过Vim,功能确实强大,但是不是很习惯,之前一直有朋友推荐SUblime Text 2这款编辑器,然后这段时间就试了一下,就深深地喜欢上这款编辑器了...
Python中的模块 有过C语言编程经验的朋友都知道在C语言中如果要引用sqrt这个函数,必须用语句&quot;#include&lt;math.h&gt;&quot;引入math.h这个头文件,否则是无法正常进行调用的。那么在Python中,如果要引用一些内置的函数,该怎么处理呢?在Python中
Python的基础语法 在对Python有了基础的认识之后,下面来了解一下Python的基础语法,看看它和C语言、java之间的基础语法差异。一.变量、表达式和语句 Python中的语句也称作命令,比如print &quot;hello python&quot;这就是一条语句。 表达式,顾名思义,是
Eclipse+PyDevʽjango+Mysql搭建Python web开发环境 Python的web框架有很多,目前主流的有Django、Tornado、Web.py等,最流行的要属Django了,也是被大家最看好的框架之一。下面就来讲讲如何搭建Django的开发环境。一.准备工作 需要下载的
在windows下安装配置Ulipad 今天推荐一款轻便的文本编辑器Ulipad,用来写一些小的Python脚本非常方便。 Ulipad下载地址: https://github.com/limodou/ulipad http://files.cnblogs.com/dolphin0520/u...
Python中的函数(三) 在前面两篇文章中已经探讨了函数的一些相关用法,下面一起来了解一下函数参数类型的问题。在C语言中,调用函数时必须依照函数定义时的参数个数以及类型来传递参数,否则将会发生错误,这个是严格进行规定的。然而在Python中函数参数定义和传递的方式相比而言就灵活多了。一.函数参数的
在Notepad++中搭配Python开发环境 Python在最近几年一度成为最流行的语言之一,不仅仅是因为它简洁明了,更在于它的功能之强大。它不仅能够完成一般脚本语言所能做的事情,还能很方便快捷地进行大规模的项目开发。在学习Python之前我们来看一下Python的历史由来,&quot;Pytho
Python中的条件选择和循环语句 同C语言、Java一样,Python中也存在条件选择和循环语句,其风格和C语言、java的很类似,但是在写法和用法上还是有一些区别。今天就让我们一起来了解一下。一.条件选择语句 Python中条件选择语句的关键字为:if 、elif 、else这三个。其基本形式如
关于raw_input( )和sys.stdin.readline( )的区别 之前一直认为用raw_input( )和sys.stdin.readline( )来获取输入的效果完全相同,但是最近在写程序时有类似这样一段代码:import sysline = sys.stdin.readline()
初识Python 跟学习所有的编程语言一样,首先得了解这门语言的编程风格和最基础的语法。下面就让我们一起来了解一下Python的编程风格。1.逻辑行与物理行 在Python中有逻辑行和物理行这个概念,物理行是指在编辑器中实际看到的一行,逻辑行是指一条Python语句。在Python中提倡一个物理行只
当我们的代码是有访问网络相关的操作时,比如http请求或者访问远程数据库,经常可能会发生一些错误,有些错误可能重新去发送请求就会成功,本文分析常见可能需要重试的场景,并最后给出python代码实现。
1.经典迭代器 2.将Sentence中的__iter__改成生成器函数 改成生成器后用法不变,但更加简洁。 3.惰性实现 当列表比较大,占内存较大时,我们可以采用惰性实现,每次只读取一个元素到内存。 或者使用更简洁的生成器表达式 4.yield from itertools模块含有大量生成器函数可
本文介绍简单介绍socket的常用函数,并以python-kafka中的源码socketpair为例,来讲解python socket的运用
python实践中经常出现编码相关的异常,大多网上找资料而没有理解原理,导致一次次重复错误。本文对常用Unicode、UTF-8、GB2312编码的原理进行介绍,接着介绍了python字符类型unicode和str以及常见编解码错误UnicodeEncodeError和UnicodeDEcodeEr