手机版
热门标签
站点地图
我要投稿
广告合作
联系我们
搜 索
广告位招租
广告位招租
切换导航
首页
编程教程
编程导航
编程百科
编程问答
编程博文
编程实例
硬件设备
网络运营
软件教程
移动数码
办公软件
操作系统
网络运维
设计教程
栏目导航
▸ 编程语言
▸ 前端开发
▸ 移动开发
▸ 开发工具
▸ 程序设计
▸ 行业应用
▸ CMS系统
▸ 服务器
▸ 数据库
公众号推荐
微信公众号搜
"智元新知"
关注
微信扫一扫可直接关注哦!
子栏目导航
PHP
Java
Java SE
Python
NumPy
C#
C&C++
Ruby
VB
asp.Net
Go
Perl
netty
gRPC
Django
Delphi
Jsp
.NET Core
Spring
Flask
Springboot
SpringMVC
Spring Cloud
Lua
fastadmin
Laravel
Mybatis
Asp
Groovy
ThinkPHP
Yii
swoole
编程之家
NumPy
ndarray的优势
内存块风格 ndarray到底跟原生python列表有什么不同呢,请看一张图: 从图中我们可以看出ndarray在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。
作者:Tracydzf 时间:2021-07-13
numpy必知必会-第二天
6 替换array中的元素,并赋值给新的array 例如: 输入arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 输出out为array([ 0, -1,
作者:Tracydzf 时间:2021-07-13
numpy必知必会-第一天
1 如何查看np版本 import numpy as np print(np.__version__) 2 如何创建一维数据array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
作者:Tracydzf 时间:2021-07-13
numpy必知必会-第三天
11 找到两个array中的通用项,并保存在新的array中 例如:输入a = np.array([1,2,3,2,3,4,3,4,5,6]),b = np.array([7,2,10,2,7,4,9
作者:Tracydzf 时间:2021-07-13
NumPy 教程目录
待续。。。
作者:极客点儿 时间:2021-03-27
NumPy 教程第 0 章:简介和安装
NumPy - 简介NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numer...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 1 章: Ndarray 对象
NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型。 它描述相同类型的元素集合。 可以使用基于零的索引访问集合中的项目ndarray 中的每个元素在内存中使用相同大小的块。 ndarray 中的每个元素是数据类型对象的对象(称为 dtype)ndarray 原型:numpy.array(object, dtype=None, copy=True, order=None...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 2 章:数据类型
bool_存储为一个字节的布尔值(真或假)int_默认整数, 相当于 C 的long, 通常为int32或int64intc相当于 C 的int, 通常为int32或int64intp用于索引的整数, 相当于 C 的size_t, 通常为int32或int64int8字节(-128 ~ 127)int16 16 位整数(-32768 ~ 32767)int3...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 3 章:数组属性
调整数组的数组大小和维度ndarray.shape 返回一个包含数组维度的元组,也可以用于调整数组大小和维度In [1]: import numpy as npIn [2]: num = np.array([[1,2,3],[4,5,6]])In [3]: numOut[3]:array([[1, 2, 3], [4, 5, 6]])In [4]: num.sha...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 4 章:创建空数组
numpy.empty 创建指定形状和dtype的未初始化数组numpy.empty(shape, dtype = float, order = 'C')Shape 空数组的形状,整数或整数元组Dtype 所需的输出数组类型,可选Order 'C’为按行的 C 风格数组,'F’为按列的 Fortran 风格数组下面的代码展示空数组的例子,因为它们未初始化,所以数组元素默...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 5 章:从已有的 Python 数组创建 Ndarray 数组
numpy.asarray 此函数类似于numpy.array,它有较少的参数numpy.asarray(a, dtype = None, order = None)a 任意形式的输入参数,比如列表、列表的元组、元组、元组的元组、元组的列表dtype 通常,输入数据的类型会应用到返回的 ndarrayorder ‘C’ 为按行的 C 风格数组,‘F’ 为按列的 Fortran...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 6 章: 从数值范围创建 Ndarray 数组
numpy.arange 方法创建数值范围并返回 ndarray 对象numpy.arange(start, stop, step, dtype)start 起始值,默认为 0stop 终止值(不包含)step 步长,默认为 1dtype 返回 ndarray 的数据类型,如果没有提供,则会使用输入数据的类型arange 方法语法:In [1]: import ...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 7 章:切片和索引
ndarray 对象中的元素遵循基于零的索引。 有三种可用的索引方法类型: 字段访问,基本切片和高级索引ndarray 对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组In...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 8 章: 高级索引
整数数组索引NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引实例获取数组中(0,0),(1,1)和(2,0)位置处的元素In [1]: import numpy as npIn [2]: num = np.array([[1, 2], [3, 4], [5, 6]])In [3]: n...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 9 章:数组广播
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同In [1]: import numpy as npIn [2]: a = np.arra...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 10 章:数组迭代
NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式,迭代器最基本的任务的可以完成对数组元素的访问使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代In [1]: import numpy as npIn [2]: num = np.arange(6).reshape(2,3)In [3]: numOut[...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 11 章:数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:修改数组形状翻转数组修改数组维度连接数组分割数组数组元素的添加与删除修改数组形状reshape 不改变数据的条件下修改形状flat 数组元素迭代器flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组ravel 返回展开数组numpy.reshape 函...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 12 章:位运算
NumPy bitwise_ 开头的函数是位运算函数NumPy 位运算包括以下几个函数:bitwise_and 对数组元素执行位与操作bitwise_or 对数组元素执行位或操作invert 按位取反left_shift 向左移动二进制表示的位right_shift 向右移动二进制表示的位也可以用 Python 自身的位运算符进行操作:&:按位与...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 13 章:字符串函数
以下函数用于对 dtype 为 numpy.string_ 或 numpy.unicode_ 的数组执行向量化字符串操作它们基于 Python 内置库中的标准字符串函数,这些函数在字符数组类(numpy.char)中定义add() 对两个数组的逐个字符串元素进行连接multiply() 返回按元素多重连接后的字符串center() 居中字符串capitalize() 将字...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 14 章:数学函数
NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等三角函数NumPy 提供了标准的三角函数:sin()、cos()、tan()In [1]: import numpy as npIn [2]: data = np.array([0,30,45,60,90])In [3]: np.sin(data * np.pi / 180)Out[3]: arr...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 15 章:算术函数
NumPy 算术函数包含简单的加减乘除: add(),subtract(),multiply() 和 divide()需要注意的是数组必须具有相同的形状或符合数组广播规则In [1]: import numpy as npIn [2]: x = np.arange(9, dtype = np.float_).reshape(3,3)In [3]: xOut[3]:array([[0...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 16 章:统计函数
NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等numpy.amin() 用于计算数组中的元素沿指定轴的最小值numpy.amax() 用于计算数组中的元素沿指定轴的最大值示例:In [1]: import numpy as npIn [2]: num = np.array([[3,7,5],[8,4,3],[2,4,9]])In...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 17 章:排序、条件搜索和计数函数
NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较种类速度最坏情况工作空间稳定性‘quicksort’(快速排序)1O(n^2)0否‘mergesort’(归并排序)2O(n*log(n))~n/2是‘heapsort’...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 18 章:字节交换
在几乎所有的机器上,多字节对象都被存储为连续的字节序列。字节顺序,是跨越多字节的程序对象的存储规则大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致小端模式:指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 19 章:副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置视图一般发生在:numpy 的切片操作返回原数据的视图调用 ndarray 的 view() 函数产生一个视图副本一般发生在:...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 20 章:矩阵库
NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象一个 m * n 的矩阵是一个由 m 行(row)n 列(column)元素排列成的矩形阵列矩阵里的元素可以是数字、符号或数学式。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵matlib.empty() 函数返回一个新的矩阵,语法格式为:numpy.matli...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 21 章:线性代数
NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:dot 两个数组的点积,即元素对应相乘vdot 两个向量的点积inner 两个数组的内积matmul 两个数组的矩阵积determinant 数组的行列式solve 求解线性矩阵方程inv 计算矩阵的乘法逆矩阵numpy.dot() 函数对于两个一...
作者:极客点儿 时间:2021-03-27
NumPy 教程第 22 章:文件I/O操作
Numpy 可以读写磁盘上的文本数据或二进制数据NumPy 为 ndarray 对象引入了一个简单的文件格式:npynpy 文件用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息常用的 IO 函数有:load() 和 save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy 的文件中savze() ...
作者:极客点儿 时间:2021-03-27
小编推荐
苹果市值2025年有望达4万亿美元
• 华为AI辅助康养传感器Wi-Fi版上市:守护
• 天玑8400系列处理器现身 跑分大幅领先骁
• OPPO K12 Plus新机预热:抗跌耐摔五星认
• vivo手机智能体PhoneGPT亮相 可自动订餐
• 2024年双十一活动时间:10月14日开启 提
• 词典笔卷不动了,网易有道遇增长难题
• 惠普、戴尔、苹果笔记本市占率新低 华为
热门标签
更多
python
JavaScript
java
HTML
reactjs
C#
Android
CSS
Node.js
sql
r
python-3.x
MysqL
jQuery
c++
pandas
Flutter
angular
IOS
django
linux
swift
typescript
路由器
JSON
路由器设置
无线路由器
h3c
华三
华三路由器设置
华三路由器
电脑软件教程
arrays
docker
软件图文教程
C
vue.js
laravel
spring-boot
react-native