微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

pandas apply() 函数用法

lambda

函数式编程包括函数式编程思维,当然是一个很复杂的话题,但对今天介绍的apply() 函数,只需要理解:函数作为一个对象,能作为参数传递给其它参数,并且能作为函数的返回值。

函数作为对象能带来代码风格巨大的改变。举一个例子,有一个包含 1 到 10 的 list,从其中找出能被 3 整除的数字。用传统的方法

def can_divide_by_three(number):
    if number % 3 == 0:
        return True
    else:
        return False

selected_numbers = []
for number in range(1, 11):
    if can_divide_by_three(number):
        selected_numbers.append(number)

循环是不可少的,因为== can_divide_by_three() 函数==只用一次,可以用 lambda 表达式简化:

divide_by_three = lambda x : True if x % 3 == 0 else False

selected_numbers = []
for number in range(1, 11):
    if divide_by_three(item):
        selected_numbers.append(item)

这个就是传统编程思维方式,如果用函数式的编程方法呢,我们可以这样想:从一个 list 中取出特定规则的数字,能不能只关注和设置这个规则,循环这种事情交给编程语言去处理呢?当然可以。当编程人员只关心规则(规则可能是一个条件,或者由某一个 function 来定义),代码将大大简化,可读性也更强。

Python 语言提供 filter() 函数,语法如下:

filter(function, sequence)

filter() 函数功能:对 sequence 中的 item 依次执行 function(item),将结果为 True 的 item 组成一个 List/String/Tuple(取决于 sequence 的类型)并返回。有了这个函数,上面的代码可以简化为:

divide_by_three = lambda x : True if x % 3 == 0 else False
selected_numbers = filter(divide_by_three, range(1, 11))

#将 lambda 表达式放在语句中,代码简化到只需要一句话就够了
selected_numbers = filter(lambda x: x % 3 == 0, range(1, 11))

Series.apply()

回到主题, pandas 的 apply() 函数可以作用于 Series 或者整个DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数

一个例子,现在有这样一组数据,学生的考试成绩:

  Name Nationality  score
   张           汉    400
   李           回    450
   王           汉    460

如果民族不是汉族,则总分在考试分数上再加 5 分,现在需要用 pandas 来做这种计算,采取增加 pandas 列的方法。当然如果只是为了得到结果, numpy.where() 函数更简单,这里主要为了演示 Series.apply() 函数用法

import pandas as pd

df = pd.read_csv("studuent-score.csv")
df['Extrascore'] = df['Nationality'].apply(lambda x : 5 if x != '汉' else 0)
df['Totalscore'] = df['score'] + df['Extrascore']

对于 Nationality 这一列, pandas 遍历每一个值,并且对这个值执行 lambda 匿名函数,将计算结果存储在一个新的 Series 中返回。上面代码在 jupyter notebook 中显示的结果如下:

  Name Nationality  score  Extrascore  Totalscore
0    张           汉    400           0         400
1    李           回    450           5         455
2    王           汉    460           0         460

apply() 函数当然也可执行 python 内置的函数,比如我们想得到 Name 这一列字符的个数,如果用 apply() 的话:

df['NameLength'] = df['Name'].apply(len)

DataFrame.apply()

apply函数pandas里面所有函数中自由度最高的函数。该函数如下:

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None,
args=(), **kwds)
函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。

这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据结构传入给自己实现的函数中,我们在函数中实现对Series不同属性间的计算,返回一个结果,则apply函数自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。

DataFrame.apply() 函数则会遍历每一个元素,对元素运行指定的 function。比如下面的示例:

import pandas as pd
import numpy as np

matrix = [
    [1,2,3],
    [4,5,6],
    [7,8,9]
]

df = pd.DataFrame(matrix, columns=list('xyz'), index=list('abc'))
df.apply(np.square)

对 df 执行 square() 函数后,所有的元素都执行平方运算:

    x   y   z
a   1   4   9
b  16  25  36
c  49  64  81

如果只想 apply() 作用于指定的行和列,可以用行或者列的 name 属性进行限定。比如下面的示例将 x 列进行平方运算:

df.apply(lambda x : np.square(x) if x.name=='x' else x)

    x  y  z
a   1  2  3
b  16  5  6
c  49  8  9

下面的示例对 x 和 y 列进行平方运算:

df.apply(lambda x : np.square(x) if x.name in ['x', 'y'] else x)

    x   y  z
a   1   4  3
b  16  25  6
c  49  64  9

下面的示例对第一行 (a 标签所在行)进行平方运算:

df.apply(lambda x : np.square(x) if x.name == 'a' else x, axis=1)

认情况下axis=0 表示按列,axis=1 表示按行。

apply() 计算日期相减示例

平时我们会经常用到日期的计算,比如要计算两个日期的间隔,比如下面的一组关于 wbs 起止日期的数据:

    wbs   date_from     date_to
  job1  2019-04-01  2019-05-01
  job2  2019-04-07  2019-05-17
  job3  2019-05-16  2019-05-31
  job4  2019-05-20  2019-06-11

假定要计算起止日期间隔的天数。比较简单的方法就是两列相减(datetime 类型):

import pandas as pd
import datetime as dt

wbs = {
    "wbs": ["job1", "job2", "job3", "job4"],
    "date_from": ["2019-04-01", "2019-04-07", "2019-05-16","2019-05-20"],
    "date_to": ["2019-05-01", "2019-05-17", "2019-05-31", "2019-06-11"]
}

df = pd.DataFrame(wbs)
df['elpased'] = df['date_to'].apply(pd.to_datetime) -   
               df['date_from'].apply(pd.to_datetime)

apply() 函数将 date_from 和 date_to 两列转换成 datetime 类型。我们 print 一下 df:

    wbs   date_from     date_to elapsed
0  job1  2019-04-01  2019-05-01 30 days
1  job2  2019-04-07  2019-05-17 40 days
2  job3  2019-05-16  2019-05-31 15 days
3  job4  2019-05-20  2019-06-11 22 days

日期间隔已经计算出来,但后面带有一个单位 days,这是因为两个 datetime 类型相减,得到的数据类型是 timedelta64,如果只要数字,还需要使用 timedelta 的 days 属性转换一下。

df['elpased']= df['date_to'].apply(pd.to_datetime) -
               df['date_from'].apply(pd.to_datetime)
df['elapsed'] = df['elpased'].apply(lambda x : x.days)

使用 DataFrame.apply() 函数也能达到同样的效果,我们需要先定义一个函数 get_interval_days() 这个函数的第一列是一个 Series 类型的变量,执行的时候,依次接收 DataFrame 的每一行。

import pandas as pd
import datetime as dt

def get_interval_days(arrLike, start, end):   
    start_date = dt.datetime.strptime(arrLike[start], '%Y-%m-%d')
    end_date = dt.datetime.strptime(arrLike[end], '%Y-%m-%d') 

    return (end_date - start_date).days


wbs = {
    "wbs": ["job1", "job2", "job3", "job4"],
    "date_from": ["2019-04-01", "2019-04-07", "2019-05-16","2019-05-20"],
    "date_to": ["2019-05-01", "2019-05-17", "2019-05-31", "2019-06-11"]
}

df = pd.DataFrame(wbs)
df['elapsed'] = df.apply(
    get_interval_days, axis=1, args=('date_from', 'date_to'))

apply例子

读取表格

在这里插入图片描述


假如我们想要得到表格中的PublishedTime和ReceivedTime属性间的时间差数据,就可以使用下面的函数来实现:

import pandas as pd
import datetime   #用来计算日期差的包

def dataInterval(data1,data2):
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days

def getInterval(arrLike):  #用来计算日期间隔天数的调用函数
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
#    print(PublishedTime.strip(),ReceivedTime.strip())
    days = dataInterval(PublishedTime.strip(),ReceivedTime.strip())  #注意去掉两端空白
    return days

if __name__ == '__main__':    
    fileName = "NS_new.xls";
    df = pd.read_excel(fileName) 
    df['TimeInterval'] = df.apply(getInterval , axis = 1)

有时候,我们想给自己实现的函数传递参数,就可以用的apply函数的*args和**kwds参数,比如同样的时间差函数,我希望自己传递时间差的标签,这样每次标签更改就不用修改自己实现的函数了,实现代码如下:

import pandas as pd
import datetime   #用来计算日期差的包

def dataInterval(data1,data2):
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days

def getInterval_new(arrLike,before,after):  #用来计算日期间隔天数的调用函数
    before = arrLike[before]
    after = arrLike[after]
#    print(PublishedTime.strip(),ReceivedTime.strip())
    days = dataInterval(after.strip(),before.strip())  #注意去掉两端空白
    return days


if __name__ == '__main__':    
    fileName = "NS_new.xls";
    df = pd.read_excel(fileName) 
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, args = ('ReceivedTime','PublishedTime'))    #调用方式一
    #下面的调用方式等价于上面的调用方式
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, **{'before':'ReceivedTime','after':'PublishedTime'})  #调用方式二
    #下面的调用方式等价于上面的调用方式
    df['TimeInterval'] = df.apply(getInterval_new , 
      axis = 1, before='ReceivedTime',after='PublishedTime')  #调用方式三

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐