【数据结构】红黑树与跳表-(SortSet)-(TreeMap)-(TreeSet)

SortSet

  有序的Set,其实在Java中TreeSet是SortSet的唯一实现类,内部通过TreeMap实现的;而TreeMap是通过红黑树实现的;而在Redis中是通过跳表实现的;

SkipList

  跳表,思想类似平衡二叉树,但又不一样;下面摘了一个介绍:

  skiplist数据结构简介(摘自:https://www.cnblogs.com/Elliott-Su-Faith-change-our-life/p/7545940.html 

  skiplist本质上也是一种查找结构,用于解决算法中的查找问题(Searching),即根据给定的key,快速查到它所在的位置(或者对应的value)。

  我们在《Redis内部数据结构详解》系列的第一篇中介绍dict的时候,曾经讨论过:一般查找问题的解法分为两个大类:一个是基于各种平衡树,一个是基于哈希表。但skiplist却比较特殊,它没法归属到这两大类里面。

  这种数据结构是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Balanced Trees》。对细节感兴趣的同学可以下载论文原文来阅读。

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。

  我们先来看一个有序链表,如下图(最左侧的灰色节点表示一个空的头结点):

  在这样一个链表中,如果我们要查找某个数据,那么需要从头开始逐个进行比较,直到找到包含数据的那个节点,或者找到第一个比给定数据大的节点为止(没找到)。也就是说,时间复杂度为O(n)。同样,当我们要插入新数据的时候,也要经历同样的查找过程,从而确定插入位置。

  假如我们每相邻两个节点增加一个指针,让指针指向下下个节点,如下图:

分享图片

 

  这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半(上图中是7,19,26)。现在当我们想查找数据的时候,可以先沿着这个新链表进行查找。当碰到比待查数据大的节点时,再回到原来的链表中进行查找。比如,我们想查找23,查找的路径是沿着下图中标红的指针所指向的方向进行的:

分享图片

  • 23首先和7比较,再和19比较,比它们都大,继续向后比较。

  • 但23和26比较的时候,比26要小,因此回到下面的链表(原链表),与22比较。

  • 23比22要大,沿下面的指针继续向后和26比较。23比26小,说明待查数据23在原链表中不存在,而且它的插入位置应该在22和26之间。

  在这个查找过程中,由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了。需要比较的节点数大概只有原来的一半。

  利用同样的方式,我们可以在上层新产生的链表上,继续为每相邻的两个节点增加一个指针,从而产生第三层链表。如下图:

分享图片

 

  在这个新的三层链表结构上,如果我们还是查找23,那么沿着最上层链表首先要比较的是19,发现23比19大,接下来我们就知道只需要到19的后面去继续查找,从而一下子跳过了19前面的所有节点。可以想象,当链表足够长的时候,这种多层链表的查找方式能让我们跳过很多下层节点,大大加快查找的速度。

  skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似于一个二分查找,使得查找的时间复杂度可以降低到O(log n)。但是,这种方法在插入数据的时候有很大的问题。新插入一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。删除数据也有同样的问题。

  skiplist为了避免这一问题,它不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是为每个节点随机出一个层数(level)。比如,一个节点随机出的层数是3,那么就把它链入到第1层到第3层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个skiplist的过程(点击看大图):

分享图片

  从上面skiplist的创建和插入过程可以看出,每一个节点的层数(level)是随机出来的,而且新插入一个节点不会影响其它节点的层数。因此,插入操作只需要修改插入节点前后的指针,而不需要对很多节点都进行调整。这就降低了插入操作的复杂度。实际上,这是skiplist的一个很重要的特性,这让它在插入性能上明显优于平衡树的方案。这在后面我们还会提到。

  根据上图中的skiplist结构,我们很容易理解这种数据结构的名字的由来。skiplist,翻译成中文,可以翻译成“跳表”或“跳跃表”,指的就是除了最下面第1层链表之外,它会产生若干层稀疏的链表,这些链表里面的指针故意跳过了一些节点(而且越高层的链表跳过的节点越多)。这就使得我们在查找数据的时候能够先在高层的链表中进行查找,然后逐层降低,最终降到第1层链表来精确地确定数据位置。在这个过程中,我们跳过了一些节点,从而也就加快了查找速度。

  刚刚创建的这个skiplist总共包含4层链表,现在假设我们在它里面依然查找23,下图给出了查找路径:

分享图片

  需要注意的是,前面演示的各个节点的插入过程,实际上在插入之前也要先经历一个类似的查找过程,在确定插入位置后,再完成插入操作。

  至此,skiplist的查找和插入操作,我们已经很清楚了。而删除操作与插入操作类似,我们也很容易想象出来。这些操作我们也应该能很容易地用代码实现出来。

  当然,实际应用中的skiplist每个节点应该包含key和value两部分。前面的描述中我们没有具体区分key和value,但实际上列表中是按照key进行排序的,查找过程也是根据key在比较。

 

红黑树:

  这个介绍就多了,总结一下,一个自平衡的二叉查找树。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


【啊哈!算法】算法3:最常用的排序——快速排序       上一节的冒泡排序可以说是我们学习第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了O(N2)。假如我们的计算机每秒钟可以运行10亿次,那么对1亿个数进行排序,桶排序则只需要0.1秒,而冒泡排序则需要1千万秒,达到115天之久,是不是很吓人。那有没有既不浪费空间又可以快一点的排序算法
匿名组 这里可能用到几个不同的分组构造。通过括号内围绕的正则表达式就可以组成第一个构造。正如稍后要介绍的一样,既然也可以命名组,大家就有考虑把这个构造作为匿名组。作为一个实例,请看看下列字符串: “08/14/57 46 02/25/59 45 06/05/85 18 03/12/88 16 09/09/90 13“ 这个字符串就是由生日和年龄组成的。如果需要匹配年两而不要生日,就可以把正则
选择排序:从数组的起始位置处开始,把第一个元素与数组中其他元素进行比较。然后,将最小的元素方式在第0个位置上,接着再从第1个位置开始再次进行排序操作。这种操作一直到除最后一个元素外的每一个元素都作为新循环的起始点操作过后才终止。 public void SelectionSort() { int min, temp;
public struct Pqitem { public int priority; public string name; } class CQueue { private ArrayList pqueue; public CQueue() { pqueue
在编写正则表达式的时候,经常会向要向正则表达式添加数量型数据,诸如”精确匹配两次”或者”匹配一次或多次”。利用数量词就可以把这些数据添加到正则表达式里面了。 数量词(+):这个数量词说明正则表达式应该匹配一个或多个紧紧接其前的字符。 string[] words = new string[] { "bad", "boy", "baad", "baaad" ,"bear", "b
来自:http://blog.csdn.net/morewindows/article/details/6678165/归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列
插入排序算法有两层循环。外层循环会啄个遍历数组元素,而内存循环则会把外层循环所选择的元素与该元素在数组内的下一个元素进行比较。如果外层循环选择的元素小于内存循环选择的元素,那么瘦元素都想右移动以便为内存循环元素留出位置。 public void InsertionSort() { int inner, temp;
public int binSearch(int value) { int upperBround, lowerBound, mid; upperBround = arr.Length - 1; lowerBound = 0; while (lowerBound <= upper
虽然从表内第一个节点到最后一个节点的遍历操作是非常简单的,但是反向遍历链表却不是一件容易的事情。如果为Node类添加一个字段来存储指向前一个节点的连接,那么久会使得这个反向操作过程变得容易许多。当向链表插入节点的时候,为了吧数据复制给新的字段会需要执行更多的操作,但是当腰吧节点从表移除的时候就能看到他的改进效果了。 首先需要修改Node类来为累增加一个额外的链接。为了区别两个连接,这个把指
八、树(Tree)树,顾名思义,长得像一棵树,不过通常我们画成一棵倒过来的树,根在上,叶在下。不说那么多了,图一看就懂:当然了,引入了树之后,就不得不引入树的一些概念,这些概念我照样尽量用图,谁会记那么多文字?树这种结构还可以表示成下面这种方式,可见树用来描述包含关系是很不错的,但这种包含关系不得出现交叉重叠区域,否则就不能用树描述了,看图:面试的时候我们经常被考到的是一种叫“二叉树”的结构,二叉
Queue的实现: 就像Stack类的实现所做的一样,Queue类的实现用ArrayList简直是毋庸置疑的。对于这些数据结构类型而言,由于他们都是动态内置的结构,所以ArrayList是极好的实现选择。当需要往队列中插入数据项时,ArrayList会在表中把每一个保留的数据项向前移动一个元素。 class CQueue { private ArrayLis
来自:http://yingyingol.iteye.com/blog/13348911 快速排序介绍:快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地
Stack的实现必须采用一种基本结构来保存数据。因为再新数据项进栈的时候不需要担心调整表的大小,所以选择用arrayList.using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;using System.Collecti
数组类测试环境与排序算法using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;namespace Data_structure_and_algorithm{ class CArray { pr
一、构造二叉树 二叉树查找树由节点组成,所以需要有个Node类,这个类类似于链表实现中用到的Node类。首先一起来看看Node类的代码。 public class Node { public int Data; public Node Left; public Node Right; public v
二叉树是一种特殊的树。二叉树的特点是每个结点最多有两个儿子,左边的叫做左儿子,右边的叫做右儿子,或者说每个结点最多有两棵子树。更加严格的递归定义是:二叉树要么为空,要么由根结点、左子树和右子树组成,而左子树和右子树分别是一棵二叉树。 下面这棵树就是一棵二叉树。         二叉树的使用范围最广,一棵多叉树也可以转化为二叉树,因此我们将着重讲解二叉树。二叉树中还有连两种特殊的二叉树叫做满二叉树和
上一节中我们学习了队列,它是一种先进先出的数据结构。还有一种是后进先出的数据结构它叫做栈。栈限定只能在一端进行插入和删除操作。比如说有一个小桶,小桶的直径只能放一个小球,我们现在向小桶内依次放入2号、1号、3号小球。假如你现在需要拿出2号小球,那就必须先将3号小球拿出,再拿出1号小球,最后才能将2号小球拿出来。在刚才取小球的过程中,我们最先放进去的小球最后才能拿出来,而最后放进去的小球却可以最先拿
msdn中的描述如下:(?= 子表达式)(零宽度正预测先行断言。) 仅当子表达式在此位置的右侧匹配时才继续匹配。例如,w+(?=d) 与后跟数字的单词匹配,而不与该数字匹配。此构造不会回溯。(?(零宽度正回顾后发断言。) 仅当子表达式在此位置的左侧匹配时才继续匹配。例如,(?此构造不会回溯。msdn描述的比较清楚,如:w+(?=ing) 可以匹配以ing结尾的单词(匹配结果不包括ing),(
1.引入线索二叉树 二叉树的遍历实质上是对一个非线性结构实现线性化的过程,使每一个节点(除第一个和最后一个外)在这些线性序列中有且仅有一个直接前驱和直接后继。但在二叉链表存储结构中,只能找到一个节点的左、右孩子信息,而不能直接得到节点在任一遍历序列中的前驱和后继信息。这些信息只有在遍历的动态过程中才能得到,因此,引入线索二叉树来保存这些从动态过程中得到的信息。 2.建立线索二叉树 为了保
排序与我们日常生活中息息相关,比如,我们要从电话簿中找到某个联系人首先会按照姓氏排序、买火车票会按照出发时间或者时长排序、买东西会按照销量或者好评度排序、查找文件会按照修改时间排序等等。在计算机程序设计中,排序和查找也是最基本的算法,很多其他的算法都是以排序算法为基础,在一般的数据处理或分析中,通常第一步就是进行排序,比如说二分查找,首先要对数据进行排序。在Donald Knuth 的计算机程序设