一个状态机的实现

话不多说,先看代码:

interface IState
 {
  string Name { get; set; }
  //后件处理
  IList<IState> Nexts { get; set; }
  Func<IState /*this*/,IState /*next*/> Selector { get; set; }
  
 }
 class State : IState
 {
  public string Name { get; set; } = "State";

  IList<IState> IState.Nexts { get; set; } = new List<IState>();
  public Func<IState,IState> Selector { get; set; }
 }

状态比较简单,一个Name标识,一个后件状态列表,然后一个状态选择器。

比如状态a,可以转移到状态b,c,d,那么选择器就是其中一个。至于怎么选,就让用户来定义实际的选择器了。

delegate bool HandleType<T>(IState current,IState previous,ref T value);
 interface IContext<T> : IEnumerator<T>,IEnumerable<T>
 {
  //data
  T Value { get; set; }
  //前件处理
  IDictionary<Tuple<IState/*this*/,IState/*previous*/>,HandleType<T>> Handles { get; set; }
  IState CurrentState { get; set; }
  bool transition(IState next);
 }

和状态类State关注后件状态不同,上下文类Context关注前件状态。当跳转到一个新的状态,这个过程中就要根据当前状态来实施不同的策略。比如想进入状态c,根据当前状态是a,b,d 有不同的处理程序。这种转移处理程序,是一一对应的,所以用了 Tuple<进入的状态,当前状态> 来描述一个跳转链。然后用Dictionary 捆绑相关的处理程序。

上下文会携带 T Value 数据,要怎么处理这种数据?我是通过ref 参数来传递给处理程序。因为我不想IState 关心上下文的构造,它只需要关注实际的数据 T value;

上下文保存数据和当前状态,然后通过transiton 让用户控制状态的转移。这里面有一个重复,因为IState有选择器来控制状态转移了。为什么要这么处理?我是为了构造一个跳转序列。引入IEnumerator和IEnumerable接口,然状态可以在选择器的作用下自动跳转,然后用foreach 读取结果序列(只是不知道有什么用)。

class Context<T> : IContext<T>
 {
  T data;
  T IContext<T>.Value { get=>data ; set=>data = value; }
  IDictionary<Tuple<IState,IState>,HandleType<T>> IContext<T>.Handles { get; set; } 
   = new Dictionary<Tuple<IState,HandleType<T>>();
  public IState CurrentState { get; set;}
  T IEnumerator<T>.Current => (this as IContext<T>).Value ;
  object IEnumerator.Current => (this as IContext<T>).Value;
  bool IContext<T>.transition(IState next)
  {
   IContext<T> context= this as IContext<T>;
   if (context.CurrentState == null || context.CurrentState.Nexts.Contains(next))
   {
    //前件处理
    var key = Tuple.Create(next,context.CurrentState);
    if (context.Handles.ContainsKey(key) && context.Handles[key] !=null)
     if (!context.Handles[key](next,context.CurrentState,ref this.data))
      return false;

    context.CurrentState = next;
    return true;
   }
   return false;
  }
  bool IEnumerator.MoveNext()
  {
   //后件处理
   IContext<T> context = this as IContext<T>;
   IState current = context.CurrentState; 
   if (current == null)
    throw new Exception("必须设置初始状态");
   if (context.CurrentState.Selector != null)
   {
    IState next= context.CurrentState.Selector(context.CurrentState);
    return context.transition(next);
   }
   return false;
  }
  void IEnumerator.Reset()
  {
   throw new NotImplementedException();
  }
  #region IDisposable Support
  private bool disposedValue = false; // 要检测冗余调用
  protected virtual void Dispose(bool disposing)
  {
   if (!disposedValue)
   {
    if (disposing)
    {
     // TODO: 释放托管状态(托管对象)。
    }
    // TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。
    // TODO: 将大型字段设置为 null。
    disposedValue = true;
   }
  }
  // TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。
  // ~Context() {
  // // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
  // Dispose(false);
  // }
  // 添加此代码以正确实现可处置模式。
  void IDisposable.Dispose()
  {
   // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
   Dispose(true);
   // TODO: 如果在以上内容中替代了终结器,则取消注释以下行。
   // GC.SuppressFinalize(this);
  }
  IEnumerator<T> IEnumerable<T>.GetEnumerator()
  {
   return this;
  }
  IEnumerator IEnumerable.GetEnumerator()
  {
   return this;
  }
  #endregion
 }

重点关注transition函数和MoveNext函数。

bool IContext<T>.transition(IState next)
  {
   IContext<T> context= this as IContext<T>;
   if (context.CurrentState == null || context.CurrentState.Nexts.Contains(next))
   {
    //前件处理
    var key = Tuple.Create(next,ref this.data))
      return false;
    context.CurrentState = next;
    return true;
   }
   return false;
  }

做的事也很简单,就是调用前件处理程序,处理成功就转移状态,否则退出。

bool IEnumerator.MoveNext()
  {
   //后件处理
   IContext<T> context = this as IContext<T>;
   IState current = context.CurrentState; 
   if (current == null)
    throw new Exception("必须设置初始状态");
   if (context.CurrentState.Selector != null)
   {
    IState next= context.CurrentState.Selector(context.CurrentState);
    return context.transition(next);
   }
   return false;
  }

MoveNext通过选择器来选择下一个状态。

总的来说,我这个状态机的实现只是一个框架,没有什么功能,但是我感觉是比较容易编写状态转移目录树的。

用户首先要创建一组状态,然后建立目录树结构。我的实现比较粗糙,因为用户要分别构建目录树,前件处理器,还有后件选择器这三个部分。编写测试代码的时候,我写了9个状态的网状结构,结果有点眼花缭乱。要是能统一起来估计会更好一些。

要关注的是第一个状态,和最后的状态的构造,否则无法停机,嵌入死循环。

//测试代码
//---------创建部分---------
string mess = "";//3   
IState s3 = new State() { Name = "s3" };
//2   
IState s2 = new State() { Name = "s2" };
//1   
IState s1 = new State() { Name = "s1" };
//---------组合起来---------   
s1.Nexts = new List<IState> { s2,s3 };   
s2.Nexts = new List<IState> { s1,s3 };   
s3.Nexts = new List<IState> { }; //注意end写法
//---------上下文---------    
//transition   
IContext<int> cont = new Context<int> { CurrentState=s1};//begin   
cont.Value = 0;
//---------状态处理器--------- 
HandleType<int> funcLaji = (IState current,ref int v) => { mess += $"{current.Name}:垃圾{previous.Name}\n"; v++; return true; };
//1   
cont.Handles.Add(Tuple.Create(s1,default(IState)),funcLaji);   
cont.Handles.Add(Tuple.Create(s1,s2),funcLaji);
//2   
cont.Handles.Add(Tuple.Create(s2,s1),funcLaji);
//3   
cont.Handles.Add(Tuple.Create(s3,funcLaji); 
cont.Handles.Add(Tuple.Create(s3,funcLaji);
//---------状态选择器---------    
var rval = new Random();   
Func<int,int> round = x => rval.Next(x);   
s1.Selector = st => round(2)==0? s2:s3;   
s2.Selector = st => round(2)==0? s1:s3;

构造完毕后,就可以使用这个状态机了。

//选择器跳转   
mess += "选择器跳转:\n------------------------\n";
foreach (var stor in cont)
    mess+=$"状态转变次数:{stor}\n";
//直接控制跳转
mess += "\n直接控制状态跳转:\n------------------------\n";
cont.transition(s1);
cont.transition(s2);
cont.transition(s3);

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持编程小技巧!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


项目中经常遇到CSV文件的读写需求,其中的难点主要是CSV文件的解析。本文会介绍CsvHelper、TextFieldParser、正则表达式三种解析CSV文件的方法,顺带也会介绍一下CSV文件的写方法。 CSV文件标准 在介绍CSV文件的读写方法前,我们需要了解一下CSV文件的格式。 文件示例 一
简介 本文的初衷是希望帮助那些有其它平台视觉算法开发经验的人能快速转入Halcon平台下,通过文中的示例开发者能快速了解一个Halcon项目开发的基本步骤,让开发者能把精力完全集中到算法的开发上面。 首先,你需要安装Halcon,HALCON 18.11.0.1的安装包会放在文章末尾。安装包分开发和
这篇文章主要简单记录一下C#项目的dll文件管理方法,以便后期使用。 设置dll路径 参考C#开发奇技淫巧三:把dll放在不同的目录让你的程序更整洁中间的 方法一:配置App.config文件的privatePath : &lt;runtime&gt; &lt;assemblyBinding xml
在C#中的使用JSON序列化及反序列化时,推荐使用Json.NET——NET的流行高性能JSON框架,当然也可以使用.NET自带的 System.Text.Json(.NET5)、DataContractJsonSerializer、JavaScriptSerializer(不推荐)。
事件总线是对发布-订阅模式的一种实现,是一种集中式事件处理机制,允许不同的组件之间进行彼此通信而又不需要相互依赖,达到一种解耦的目的。&#xA;EventBus维护一个事件的字典,发布者、订阅者在事件总线中获取事件实例并执行发布、订阅操作,事件实例负责维护、执行事件处理程序。
通用翻译API的HTTPS 地址为https://fanyi-api.baidu.com/api/trans/vip/translate,使用方法参考通用翻译API接入文档 。&#xA;请求方式可使用 GET 或 POST 方式(Content-Type 请指定为:application/x-www-for
词云”由美国西北大学新闻学副教授、新媒体专业主任里奇·戈登(Rich Gordon)于2006年最先使用,是通过形成“关键词云层”或“关键词渲染”,对文本中出现频率较高的“关键词”的视觉上的突出。词云图过滤掉大量的文本信息,使浏览者只要一眼扫过文本就可以领略文本的主旨。&#xA;网上大部分文章介绍的是使用P
微软在.NET中对串口通讯进行了封装,我们可以在.net2.0及以上版本开发时直接使用SerialPort类对串口进行读写操作。&#xA;为操作方便,本文对SerialPort类做了一些封装,暂时取名为**SerialPortClient**。
简介 管道为进程间通信提供了平台, 管道分为两种类型:匿名管道、命名管道,具体内容参考.NET 中的管道操作。简单来说,匿名管道只能用于本机的父子进程或线程之间,命名管道可用于远程主机或本地的任意两个进程,本文主要介绍命名管道的用法。 匿名管道在本地计算机上提供进程间通信。 与命名管道相比,虽然匿名
目录自定义日志类NLog版本的日志类Serilog版本的日志类 上个月换工作,新项目又要重新搭建基础框架,把日志实现部分单独记录下来方便以后参考。 自定义日志类 代码大部分使用ChatGPT生成,人工进行了测试和优化,主要特点: 线程安全,日志异步写入文件不影响业务逻辑 支持过期文件自动清理,也可自
[TOC] # 原理简介 本文参考[C#/WPF/WinForm/程序实现软件开机自动启动的两种常用方法](https://blog.csdn.net/weixin_42288432/article/details/120059296),将里面中的第一种方法做了封装成**AutoStart**类,使
简介 FTP是FileTransferProtocol(文件传输协议)的英文简称,而中文简称为“文传协议”。用于Internet上的控制文件的双向传输。同时,它也是一个应用程序(Application)。基于不同的操作系统有不同的FTP应用程序,而所有这些应用程序都遵守同一种协议以传输文件。 FTP
使用特性,可以有效地将元数据或声明性信息与代码(程序集、类型、方法、属性等)相关联。 将特性与程序实体相关联后,可以在运行时使用反射这项技术查询特性。&#xA;在 C# 中,通过用方括号 ([]) 将特性名称括起来,并置于应用该特性的实体的声明上方以指定特性。
# 简介 主流的识别库主要有ZXing.NET和ZBar,OpenCV 4.0后加入了QR码检测和解码功能。本文使用的是ZBar,同等条件下ZBar识别率更高,图片和部分代码参考[在C#中使用ZBar识别条形码](https://www.cnblogs.com/w2206/p/7755656.htm
C#中Description特性主要用于枚举和属性,方法比较简单,记录一下以便后期使用。 扩展类DescriptionExtension代码如下: using System; using System.ComponentModel; using System.Reflection; /// &lt;
本文实现一个简单的配置类,原理比较简单,适用于一些小型项目。主要实现以下功能:保存配置到json文件、从文件或实例加载配置类的属性值、数据绑定到界面控件。&#xA;一般情况下,项目都会提供配置的设置界面,很少手动更改配置文件,所以选择以json文件保存配置数据。
前几天用SerialPort类写一个串口的测试程序,关闭串口的时候会让界面卡死。网上大多数方法都是定义2个bool类型的标记Listening和Closing,关闭串口和接受数据前先判断一下。我的方法是DataReceived事件处理程序用this.BeginInvoke()更新界面,不等待UI线程
约束告知编译器类型参数必须具备的功能。 在没有任何约束的情况下,类型参数可以是任何类型。 编译器只能假定 System.Object 的成员,它是任何 .NET 类型的最终基类。 如果客户端代码使用不满足约束的类型,编译器将发出错误。 通过使用 where 上下文关键字指定约束。&#xA;最常用的泛型约束为
protobuf-net是用于.NET代码的基于契约的序列化程序,它以Google设计的“protocol buffers”序列化格式写入数据,适用于大多数编写标准类型并可以使用属性的.NET语言。&#xA;protobuf-net可通过NuGet安装程序包,也可直接访问github下载源码:https:/
工作中经常遇到需要实现TCP客户端或服务端的时候,如果每次都自己写会很麻烦且无聊,使用SuperSocket库又太大了。这时候就可以使用SimpleTCP了,当然仅限于C#语言。&#xA;SimpleTCP是一个简单且非常有用的 .NET 库,用于处理启动和使用 TCP 套接字(客户端和服务器)的重复性任务