C语言之数据在内存中的存储

 

C语言之数据在内存中的存储

在我们学习此之前,我们先来回忆一下C语言中都有哪些数据类型呢?

首先我们来看看C语言中的基本的内置类型:

char     //字符数据类型
short    短整型
int      整形
long     长整型 long long    更长的整形
float    单精度浮点数
double   双精度浮点数

在这,值得一提的是C语言的基本类型中并没有字符串类型而字符串的实现一般都是通过数组来实现

C语言的数据类型我们可以基本分为5种类型

1.整型家族

char     //字符形其实也属于整形,因为在字符的储存是存的是它的ASCII码值
unsigned char signed char
shortshort [int] signed int]
int signed int
longlong [int]

2.浮点型家族

float
double

3.构造类型

> 数组类型
> 结构体类型 struct
> 枚举类型   enum
> 联合类型   union

4.指针类型

int *pi; 
char *pc;
float* pf;
void* pv;

5.空类型

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

 

在复习了一遍数据类型之后,我们现在来谈谈数据到底是怎么存储的

 

一.整形在内存中的存储

 

首先我们来看看整形

比如,下面再平常不过的式子

    int a = 10;
    int b = -20;

先不管其他的,我们先来看看它在内存里是怎么放的

 

 

 我们得到了一串数字,而这些数字代表这什么呢?

原来是一串16进制的数字啊

我们知道一个整形系统分配四个字节来储存

而一个字节又有8个比特位,所以就会有32个二进制的0或1.我们把上面两串16进制的数字转为2进制来看一看有什么不同。

00001010000000000000000000000000

11101100111111111111111111111111

在这我们来看看10的二进制

 00000000000000000000000000001010 

有什么不同呢?

在这我们来介绍一下原码,反码,补码

计算机中的有符号数有三种表示方法,即原码、反码和补码。 
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位 三种表示方法各不相同。 原码 直接将二进制按照正负数的形式翻译成二进制就可以。 反码 将原码的符号位不变,其他位依次按位取反就可以得到了。 补码 反码
+1就得到补码。

那我们来举个例子

 

 

 

 对于正整数,它的原码 反码 补码 都相同

那么对于负整数呢,继续来看看

 

 

 

现在我们应该对原码反码补码有了初步的了解,我们继续接着上面来看

计算机储存的是补码,那么我们现在来写出 10 和 -20 的补码来看看于上述内存中存的是否一样

 10的原码,反码,补码
 00000000000000000000000000001010

 -20的原码
 10000000000000000000000000010100
 -20的反码
 11111111111111111111111111101011
 -20的补码
 11111111111111111111111111101100

我们将其转换为16进制来看看

10的补码
00 00 0A

-20的补码
FF FF FF EC

 

 

这时,我们似乎发现它们俩的补码似乎按字节反了过来,这是为什么呢?

所以,这又引出了一个新的知识点——大小端

介绍
什么大端小端: 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。 为什么有大端和小端: 为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,
每个地址单元都对应着一 个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具 体的编译器),
另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字 节,那么必然存在着一个如果将多个字节安排的问题。
因此就导致了大端存储模式和小端存储模式。 例如一个 16bit 的
short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122
那么 0x11 为高字节, 0x22 为低字节。
对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。
小端模式,刚好相反。
我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

那么怎么来判断自己的编译器是大端还是小端呢?

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>

 check_sys()
{
    1return (*(char*)&a);
}

 main()
{
    int ret = check_sys();
    if (ret == )
    {
        printf("小端\n");
    }
    else
    {
        printf(大端\nreturn 0;
}

运行结果如下

 

 

 但,我们可能还是不知道它是怎么实现的,所以在这解释一下

 

 

相信现在大家应该对此清楚了不少

那么,现在我们将上述代码微做修改用我们的Keil C51来试一试

#include <reg52.h>

#define uint unsigned int
    
sbit LSA=P2^2;
sbit LSB=P2^3;
sbit LSC=P2^4;

void delay(uint a)
{
    while(a--);
}

 check_sys();
    LSA=;
    LSB=;
    LSC=while()
    {
        )
        {
            P0=0x06;在数码管的首位显示 1
        }
        
        {
            P0=0x3f;在数码管的首位显示 0
        }
        delay(1000);
    }
}

运行结果

 

 

 结果正如介绍所说,keil c51为大端存储

 

那么接下来我们来看看几道题,以此加深我们对此的理解

 

.
输出什么?
#include <stdio.h>
  main()
{
  char a= -;
  signed char b=-1; 
  unsigned char c=-;   printf(a=%d,b=%d,c=%d",a,b,c);
  return ; }

 

 

 运行结果:

 

.
#include <stdio.h>

unsigned char i = 0; 

for(i = 0;i<=255;i++)   {     printf(hello world\n);   }   ; }

那,这一题的结果  不知大家是否能够想到是一直打印 hello world 

 

 

 

 

我们对整形的存储就停在这

 

接下来我们以一道题来进入浮点型在内存中的存储

int n = 9;
  float *pFloat = (float *)&n; 
  printf(n的值为:%d\n*pFloat的值为:%f\npFloat);
  
*pFloat = 9.0;
  printf(; }

这道题许多人会给出 9  9.000000  9 9.000000 的答案

可事实并非如此 

这题的答案为:

 

 

 为什么呢?

 所以

 

二.浮点型在内存中的存储

 

 

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

 

     (-1)^S * M * 2^E

 

(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

M表示有效数字,大于等于1,小于2。

 

2^E表示指数位。

 

我们举个例子如 5.5

我们可以写成 101.1(2进制)

按上述改为:

(-1)^ 0 *1.011*2^2

 

 那么 S=0,M=1.011,E=2.

 

IEEE    754规定:  对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

  对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

而 IEEE 754对有效数字M和指数E,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形 式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。 比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。 以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂

首先,E为一个无符号整数(unsigned int这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的 取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真 实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E 是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

 

那么根据上面所述  现在 S=0,M=011,E=129

所以在内存中就为 0 10000001 01100000000000000000000 将其换为16进制为 40 b0 00 00

 

 

然后,指数E从内存中取出还可以再分成三种情况:

1.E不全为0或1

  这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前 加上第一位的1。

2.E全为0

  这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,     有效数字M不再加上第一位的1,而是还原为

 

  0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

3.E全为1

 

  这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

 

 

此时是否对前面所提到的那一题恍然大悟了呢

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


文章浏览阅读315次。之前用C语言编过链表,这几天突然想用C++编一下链表,搞了大半天才搞出来,所以就赶紧整理一下记录下来,省的万一时间长了找不到代码哈哈。一、链表代码1、Node.h文件代码#pragma onceclass Node{public: int ID; char alph; Node* next; Node(int ID,char alph); ~Node();private:..._if(current->id==id)
文章浏览阅读219次。碰到问题就要记录下来,防止遗忘吧。文章目录一、VS中的命令行参数二、内联函数和宏三、初始化和赋值一、VS中的命令行参数今天在运行代码的时候,碰都了下面的情况: // 解析命令行参数 if (pcl::console::find_argument (argc, argv, "-h") >= 0) { printUsage (argv[0]); return 0; }..._"if (pcl::console::find_argument(argc, argv, "-f") >= 0)怎么输入参数"
文章浏览阅读1.8k次,点赞11次,收藏37次。因为自己对决策树的机制非常的好奇,所以就研究了一下决策树的ID3算法,在这也做一篇笔记记录一下过程。文章目录一、什么是决策树?二、信息增益2.1信息熵2.1.1定义2.1.2演变2.2信息增益三、ID3算法实现四、小结一、什么是决策树?这个问题是我从一开始就有的疑问,什么是决策树?在看了一些资料之后,因为没有看到书上给出具体定义,所以按照我自己的理解决策树就是通过一个个“决策”而构建的一种树状结构,而且决策树的整个处理机制非常类似于我们人类在面临决策问题时的处理机制,这也可能就是其名字的由来。决_c++id3
文章浏览阅读492次。C++ 设计模式之策略模式
文章浏览阅读683次。我也算是个C++的小白,对于C++中的谓语我第一时间就想到了C#中的委托,但两者又不尽相同,所以想写一篇笔记记录一下。文章目录一、什么是谓语?二、使用谓语一、什么是谓语?谓语是一个可调用的表达式,其返回的结果可以作为条件的值,在C++中其实就是向算法传递函数。这和C#中的委托的概念其实是一样的,都是将函数作为参数进行传递。C++标准库中的谓语主要有两类:一元谓语和二元谓语,也就是有的算法只能..._谓语句 c++
文章浏览阅读225次。又看了一遍操作符的东西,感觉之前对操作符的理解还停留在很浅的认知上(仅仅会用哈哈),所以做一下笔记来加深一下印象。文章目录一、为什么会有操作符重载?二、操作符重载作用的对象一、为什么会有操作符重载?如果要回答这个问题,我们其实应该仔细想一下如果没有操作符重载会怎样呢?这其实很容易就联想到了C语言,因为他就没有操作符重载这一说。虽然C语言中没有类class这一概念,但是他有着和类及其相似的结构..._6-6 我的朋友 - c/c++ 操作符重载分数 15作者 海洋饼干叔叔单位 重庆大学实现frie
文章浏览阅读216次。因为之前碰到了很多关于C++上的问题,现在整理并记录一下。文章目录一、引用一、引用在C++中,引用就是给对象起了另一个名字,也就是“对象别名”。感觉和什么东西很相似,仔细一想不就是类型别名“typedef”吗哈哈。它其实是和原对象形成了一种绑定的一种关系,..._vc++6.0报错:returning address of local
文章浏览阅读565次。因为一直好奇预处理器的工作机制,所以就查了查书,做一下自己看完书之后的笔记。文章目录一、预处理器的作用一、预处理器的作用_c语言预处理器作用
文章浏览阅读1.8k次,点赞3次,收藏10次。最近特别查阅了一下关于C++文件的输入/输出的资料,整理了一下就写一下笔记。文章目录一、什么是流二、什么是缓冲区三、代码实现文件IO3.1 使用文件流对象读取数据3.2重定向一、什么是流当前的计算机具有很多种设备,但是无论是哪种设备都要与数据和信息进行打交道,所以这就牵扯到设备与数据之间的I/O操作。而每种设备又有着不同的特性和操作协议,由于过于复杂,所以我们一般是不会和这些通信细节打交道的..._c++ inpath
文章浏览阅读4.8k次,点赞6次,收藏29次。因为要使用到C++的动态链接库,所以就特意网上找了一下资料实现了一下。文章目录一、lib与dll文件二、创建dll文件三、dll隐式链接四、显式链接五、小结一、lib与dll文件之前我一直以为动态链接库就是指dll文件,这也是C#给我造成的一种印象,因为在C#中建立的类库文件都是dll文件,而且只要简单引用就可以了,但是C++却并不是这样的,这可能是因为C#隐藏了一些细节的缘故吧。在C++中共有两种库模式,一种是包含lib和dll两种文件,这种情况下其中的lib文件包含了函数所在的dll文件和dl_c++调用动态链接库
文章浏览阅读973次。因为遇到了一这个操作符的问题,所以记录一下出现的问题*~*。一、问题描述二、产生原因因为也是第一次出现这个问题,所以就到网上查了一些资料和书籍,现在倒也大概理解这个错误出现的原因了。有时候举个例子可能更容易理解为啥会出现这个错误,就拿一本书中的例子来说一下,如下所示:template<class T> class NamedObject { public: NamedObject(std::string& nameVal, const T objectVal) __copy_assign报错
C语言中的单向链表可以解决数组和结构体在使用时的内存连续性问题,同时还能动态地调整长度。本文介绍了单向链表的结构和基本操作,并给出了一个简单的示例代码。
文章浏览阅读2.3k次。区分'0'、"0"、0、''_0和
文章浏览阅读5.8k次,点赞4次,收藏8次。C语言函数指针详解,微剖本质_c语言指针函数
数组指针和指针数组是代码中常见的定义形式。虽然它们的语法类似,但含义完全不同。对于一维数组而言,数组名即为首元素的地址,不需要取址即可赋值给指针。而对于二维数组,数组名代表首行元素的地址,可以看作是一个指针数组,需要使用取址操作。
文章浏览阅读297次。总结刚入门的新同学C语言编程常见的低级错误
文章浏览阅读1.5w次,点赞12次,收藏70次。C语言 数组指针详解_c语言数组指针
文章浏览阅读306次。cJson常用接口总结并测试_用于测试的json接口
本篇文章和大家了解一下C语言中pthread_exit()函数实现终止线程的方法。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。多线程编程中,线程...
本教程操作系统:windows10系统、c99版本、DELL G3电脑。 C语言是一门强大的编程语言,它允许我们对不同的数据类型进行各种运算和操作。但是有时候,我们需要将一个数据类型转换为另一个数据类型。这就是强制类型转