面试突击40:线程休眠的方法有几种?

在 Java 中,让线程休眠的方法有很多,这些方法大致可以分为两类,一类是设置时间,在一段时间后自动唤醒,而另一个类是提供了一对休眠和唤醒的方法,在线程休眠之后,可以在任意时间对线程进行唤醒。

PS:休眠是指让某个线程暂停执行(进入等待状态),唤醒指的是让某个暂停的线程继续执行。

线程休眠的方法有以下 5 个:

  1. Thread.sleep
  2. TimeUnit
  3. wait
  4. Condition
  5. LockSupport

其中 sleep 和 TimeUnit 是让线程休眠一段时间后自动唤醒,而 wait、Condition、LockSupport 提供了一对休眠和唤醒线程的方法,可以实现任意时刻唤醒某个线程。

方法1:Thread.sleep

Thread.sleep 方法来自于 Thread 类,它是一个 native 本地方法,其实现源码如下:

public static native void sleep(long millis) throws InterruptedException;

Thread.sleep 方法需要传递一个 long 类型的毫秒数,表示 n 毫秒之后自动唤醒,它的基础用法如下:

Thread t1 = new Thread() {
    @Override
    public void run() {
        System.out.println("线程执行:" + LocalDateTime.now());
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程结束:" + LocalDateTime.now());
    }
};
t1.start();

以上程序的执行结果如下图所示:

image.png

方法2:TimeUnit

sleep 方法因为要传递一个毫秒类型的参数,因此在设置大一点的时间时比较麻烦,比如设置 1 小时或 1 天时,此时我们就可以使用 TimeUnit 来替代 sleep 方法实现休眠。
TimeUnit 的功能和 sleep 一样,让线程休眠 N 个单位时间之后自动唤醒,它的基础用法如下:

Thread t1 = new Thread() {
    @Override
    public void run() {
        System.out.println("线程执行:" + LocalDateTime.now());
        try {
            TimeUnit.SECONDS.sleep(1); // 休眠 1s
            //TimeUnit.DAYS.sleep(1); // 休眠 1 天
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程结束:" + LocalDateTime.now());
    }
};
t1.start();

以上程序的执行结果如下图所示:

image.png


当我们查看 TimeUnit 源码时就会发现,它的底层是基于 Thread.sleep 方法实现的,其实现源码如下:

image.png

方法3:wait

wait/notify/notifyAll 都来自于 Object 类,其中:

  • wait() / wait(long timeout):表示让当前线程进入休眠状态。
  • notify():唤醒当前对象上的一个休眠线程。
  • notifyAll():唤醒当前对象上的所有休眠线程。

其中 wait() 方法表示让当前线程无限期等待下去,直到遇到 notify/notifyAll 方法时才会被唤醒,而 wait(long timeout) 表示接收一个 long 类型的超时时间,如果没有遇到 notify/notifyAll 会在 long 毫秒之后自动唤醒,如果遇到了 notify/notifyAll 方法会立即被唤醒。
它的基础用法如下:

Object lock = new Object();
new Thread(() -> {
    synchronized (lock) {
        try {
            // 让当前线程休眠
            lock.wait();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}).start();
synchronized (lock) {
    lock.notify(); // 唤醒当前对象上一个休眠线程
    // lock.notifyAll(); // 唤醒当前对象上所有休眠的线程
}

需要注意的是 wait/notify/notifyAll 在使用时必须要配合 synchronized 一起使用,否则程序执行会报错。

方法4:Condition

Condition 作为 wait 的升级版,它提供的常用方法有以下几个:

  • await():让当前线程进入等待状态,直到被通知(signal)或者被中断时才会继续执行。
  • awaitUninterruptibly():让当前线程进入等待状态,直到被通知才会被唤醒,它对线程的中断通知不做响应。
  • await(long time, TimeUnit unit):在 await() 方法的基础上添加了超时时间,如果过了超时时间还没有遇到唤醒方法则会自动唤醒并恢复执行。
  • awaitUntil(Date deadline):让当前线程进入等待状态,如果没有遇到唤醒方法也会在设置的时间之后自动唤醒。
  • signal():唤醒一个等待在 Condition 上的线程。
  • signalAll():唤醒等待在 Condition 上所有的线程。

它的基本用法如下:

import java.time.LocalDateTime;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class ConditionExample {
    public static void main(String[] args) throws InterruptedException {
        // 创建锁
        final Lock lock = new ReentrantLock();
        // 创建 Condition
        final Condition condition = lock.newCondition();
        new Thread(() -> {
            System.out.println("线程执行:" + LocalDateTime.now());
            lock.lock(); // 得到锁
            try {
                // 休眠线程
                condition.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock(); // 释放锁
            }
            System.out.println("线程结束:" + LocalDateTime.now());
        }).start();
        Thread.sleep(1000);
        lock.lock(); // 得到锁
        try {
            // 唤醒线程
            condition.signal();
        } finally {
            lock.unlock(); // 释放锁
        }
    }
}

相比于 wait 方法,Condition 对象更加灵活,因为它可以在一把锁上定义多个 Condition 对象进行使用,如下代码所示:

 // 创建锁
final Lock lock = new ReentrantLock();
// 创建 Condition 1
final Condition condition = lock.newCondition();
// 创建 Condition 2
final Condition condition2 = lock.newCondition();
// ......

方法5:LockSupport

LockSupport 是更加底层的操作线程休眠和唤醒的对象,它提供了两个常用的方法:

  • LockSupport.park():休眠当前线程。
  • LockSupport.unpark(Thread thread):唤醒一个指定的线程。

它的基础用法如下:

Thread t1 = new Thread(() -> {
    System.out.println("线程1休眠");
    LockSupport.park(); // 休眠线程
    System.out.println("线程1执行结束");
}, "线程1");
t1.start();

Thread t2 = new Thread(() -> {
    System.out.println("线程2休眠");
    LockSupport.park(); // 休眠线程
    System.out.println("线程2执行结束");
}, "线程2");
t2.start();

Thread t3 = new Thread(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    System.out.println("唤醒线程1");
    LockSupport.unpark(t1); // 唤醒线程1
}, "线程3");
t3.start();

以上程序的执行结果如下图所示:

image.png

总结

Thread.sleep 和 TimeUnit 是让线程休眠并在一段时间后自动唤醒,而 wait、Condition、LockSupport 提供了休眠和唤醒线程的方法,其中 Condition 为 wait 方法的升级版,而 LockSupport 是更底层的让线程休眠和唤醒的方法,它可以实现唤醒某个指定的线程,这是其它方法所不具备的(功能)。

是非审之于己,毁誉听之于人,得失安之于数。

公众号:Java面试真题解析

面试合集:https://gitee.com/mydb/interview

原文地址:https://www.cnblogs.com/vipstone/p/16158118.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


在 Java 语言中,提高程序的执行效率有两种实现方法,一个是使用线程、另一个是使用线程池。而在生产环境下,我们通常会采用后者。为什么会这样呢?今天我们就来聊聊线程池的优点,以及池化技术及其应用。 1.池化技术 池化技术指的是提前准备一些资源,在需要时可以重复使用这些预先准备的资源。 池化技术的优点
在 Java 中停止线程的实现方法有以下 3 种: 自定义中断标识符,停止线程。 使用线程中断方法 interrupt 停止线程。 使用 stop 停止线程。 其中 stop 方法为 @Deprecated 修饰的过期方法,也就是不推荐使用的过期方法,因为 stop 方法会直接停止线程,这样就没有给
在多线程编程中,wait 方法是让当前线程进入休眠状态,直到另一个线程调用了 notify 或 notifyAll 方法之后,才能继续恢复执行。而在 Java 中,wait 和 notify/notifyAll 有着一套自己的使用格式要求,也就是在使用 wait 和 notify(notifyAll
在 Java 语言中,并发编程都是通过创建线程池来实现的,而线程池的创建方式也有很多种,每种线程池的创建方式都对应了不同的使用场景,总体来说线程池的创建可以分为以下两类: 通过 ThreadPoolExecutor 手动创建线程池。 通过 Executors 执行器自动创建线程池。 而以上两类创建线
sleep 方法和 wait 方法都是用来将线程进入休眠状态的,并且 sleep 和 wait 方法都可以响应 interrupt 中断,也就是线程在休眠的过程中,如果收到中断信号,都可以进行响应,并抛出 InterruptedException 异常。那 sleep 和 wait 的区别都有哪些呢
在 Java 中,线程的创建方法有 7 种,分为以下 3 大类: 继承 Thread 类的方式,它有 2 种实现方法。 实现 Runnable 接口的方式,它有 3 种实现方法。 实现 Callable 接口的方式,它有 2 种实现方法。 接下来我们一个一个来看。 1.继承Thread类 继承 Th
所谓的线程池的 7 大参数是指,在使用 ThreadPoolExecutor 创建线程池时所设置的 7 个参数,如以下源码所示: public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
在 Java 语言中,线程分为两类:用户线程和守护线程,默认情况下我们创建的线程或线程池都是用户线程,所以用户线程也被称之为普通线程。 想要查看线程到底是用户线程还是守护线程,可以通过 Thread.isDaemon() 方法来判断,如果返回的结果是 true 则为守护线程,反之则为用户线程。 我们
聊到线程池就一定会聊到线程池的执行流程,也就是当有一个任务进入线程池之后,线程池是如何执行的?我们今天就来聊聊这个话题。线程池是如何执行的?线程池的拒绝策略有哪些? 线程池执行流程 想要真正的了解线程池的执行流程,就得先从线程池的执行方法 execute() 说起,execute() 实现源码如下:
单例模式是面试中的常客了,它的常见写法有 4 种:饿汉模式、懒汉模式、静态内部类和枚举,接下来我们一一来看。 1.饿汉模式 饿汉模式也叫预加载模式,它是在类加载时直接创建并初始化单例对象,所以它并不存在线程安全的问题。它是依靠 ClassLoader 类机制,在程序启动时只加载一次,因此不存在线程安
线程安全是指某个方法或某段代码,在多线程中能够正确的执行,不会出现数据不一致或数据污染的情况,我们把这样的程序称之为线程安全的,反之则为非线程安全的。在 Java 中,解决线程安全问题有以下 3 种手段: 使用线程安全类,比如 AtomicInteger。 加锁排队执行 使用 synchronize
在 Java 语言中,保证线程安全性的主要手段是加锁,而 Java 中的锁主要有两种:synchronized 和 Lock,我们今天重点来看一下 synchronized 的几种用法。 用法简介 使用 synchronized 无需手动执行加锁和释放锁的操作,我们只需要声明 synchronize
在 Java 语言中,有两个线程池可以执行定时任务:ScheduledThreadPool 和 SingleThreadScheduledExecutor,其中 SingleThreadScheduledExecutor 可以看做是 ScheduledThreadPool 的单线程版本,它的用法和
从公平的角度来说,Java 中的锁总共可分为两类:公平锁和非公平锁。但公平锁和非公平锁有哪些区别?孰优孰劣呢?在 Java 中的应用场景又有哪些呢?接下来我们一起来看。 正文 公平锁:每个线程获取锁的顺序是按照线程访问锁的先后顺序获取的,最前面的线程总是最先获取到锁。 非公平锁:每个线程获取锁的顺序
单例模式的实现方法有很多种,如饿汉模式、懒汉模式、静态内部类和枚举等,当面试官问到“为什么单例模式一定要加 volatile?”时,那么他指的是为什么懒汉模式中的私有变量要加 volatile? 懒汉模式指的是对象的创建是懒加载的方式,并不是在程序启动时就创建对象,而是第一次被真正使用时才创建对象。
读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。总结来说,读写锁的特点是:读读不互斥、读写互斥、写写互斥。 1.读写锁使用 在
很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作。对于线程 Thread 来说,很好实现,加一个 join 方法就解决了,然而对于线程池的判断就比较麻烦了。 我们本文提供 4 种判断线程池任务是否执行完的方法: 使用 isTerminated 方法判断。 使用 getCompl
在 Java 中,线程池的状态和线程的状态是完全不同的,线程有 6 种状态:NEW:初始化状态、RUNNABLE:可运行/运行状态、BLOCKED:阻塞状态、WAITING:无时限等待状态、TIMED_WAITING:有时限等待状态和 TERMINATED:终止状态。而线程池的状态有以下 5 种:
volatile 是 Java 并发编程的重要组成部分,也是常见的面试题之一,它的主要作用有两个:保证内存的可见性和禁止指令重排序。下面我们具体来看这两个功能。 内存可见性 说到内存可见性问题就不得不提 Java 内存模型,Java 内存模型(Java Memory Model)简称为 JMM,主要
1.第一范式 第一范式规定表中的每个列都应该是不可分割的最小单元。比如以下表中的 address 字段就不是不可分割的最小单元,如下图所示: 其中 address 还可以拆分为国家和城市,如下图所示: 这样改造之后,上面的表就满足第一范式了。 2.第二范式 第二范式是在满足第一范式的基础上,规定表中