面试突击32:为什么创建线程池一定要用ThreadPoolExecutor?

在 Java 语言中,并发编程都是依靠线程池完成的,而线程池的创建方式又有很多,但从大的分类来说,线程池的创建总共分为两大类:手动方式使用 ThreadPoolExecutor 创建线程池和使用 Executors 执行器自动创建线程池。
那究竟要使用哪种方式来创建线程池呢?我们今天就来详细的聊一聊。

先说结论

在 Java 语言中,一定要使用 ThreadPoolExecutor 手动的方式来创建线程池,因为这种方式可以通过参数来控制最大任务数和拒绝策略,让线程池的执行更加透明和可控,并且可以规避资源耗尽的风险。

OOM风险演示

假如我们使用了 Executors 执行器自动创建线程池的方式来创建线程池,那么就会存现线程溢出的风险,以 CachedThreadPool 为例我们来演示一下:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ThreadPoolExecutorExample {
    static class OOMClass {
        // 创建 1MB 大小的变量(1M = 1024KB = 1024*1024Byte)
        private byte[] data_byte = new byte[1 * 1024 * 1024];
    }
    public static void main(String[] args) throws InterruptedException {
        // 使用执行器自动创建线程池
        ExecutorService threadPool = Executors.newCachedThreadPool();
        List<Object> list = new ArrayList<>();
        // 添加任务
        for (int i = 0; i < 10; i++) {
            int finalI = i;
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    // 定时添加
                    try {
                        Thread.sleep(finalI * 200);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 将 1M 对象添加到集合
                    OOMClass oomClass = new OOMClass();
                    list.add(oomClass);
                    System.out.println("执行任务:" + finalI);
                }
            });
        }
    }
}

第 2 步将 Idea 中 JVM 最大运行内存设置为 10M(设置此值主要是为了方便演示),如下图所示:

image.png


以上程序的执行结果如下图所示:

image.png


从上述结果可以看出,当线程执行了 7 次之后就开始出现 OutOfMemoryError 内存溢出的异常了。

内存溢出原因分析

想要了解内存溢出的原因,我们需要查看 CachedThreadPool 实现的细节,它的源码如下图所示:

image.png


构造函数的第 2 个参数被设置成了 Integer.MAX_VALUE,这个参数的含义是最大线程数,所以由于 CachedThreadPool 并不限制线程的数量,当任务数量特别多的时候,就会创建非常多的线程。而上面的 OOM 示例,每个线程至少要消耗 1M 大小的内存,加上 JDK 系统类的加载也要占用一部分的内存,所以当总的运行内存大于 10M 的时候,就出现内存溢出的问题了。

使用ThreadPoolExecutor来改进

接下来我们使用 ThreadPoolExecutor 来改进一下 OOM 的问题,我们使用 ThreadPoolExecutor 手动创建线程池的方式,创建一个最大线程数为 2,最多可存储 2 个任务的线程池,并且设置线程池的拒绝策略为忽略新任务,这样就能保证线程池的运行内存大小不会超过 10M 了,实现代码如下:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;

/**
 * ThreadPoolExecutor 演示示例
 */
public class ThreadPoolExecutorExample {
    static class OOMClass {
        // 创建 1MB 大小的变量(1M = 1024KB = 1024*1024Byte)
        private byte[] data_byte = new byte[1 * 1024 * 1024];
    }

    public static void main(String[] args) throws InterruptedException {
        // 手动创建线程池,最大线程数 2,最多存储 2 个任务,其他任务会被忽略
        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 2,
                0L, TimeUnit.SECONDS, new LinkedBlockingQueue<>(2),
                new ThreadPoolExecutor.DiscardPolicy()); // 拒绝策略:忽略任务
        List<Object> list = new ArrayList<>();
        // 添加任务
        for (int i = 0; i < 10; i++) {
            int finalI = i;
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    // 定时添加
                    try {
                        Thread.sleep(finalI * 200);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 将 1m 对象添加到集合
                    OOMClass oomClass = new OOMClass();
                    list.add(oomClass);
                    System.out.println("执行任务:" + finalI);
                }
            });
        }
        // 关闭线程池
        threadPool.shutdown();
        // 检测线程池的任务执行完
        while (!threadPool.awaitTermination(3, TimeUnit.SECONDS)) {
            System.out.println("线程池中还有任务在处理");
        }
    }
}

以上程序的执行结果如下图所示:

image.png


从上述结果可以看出,线程池从开始执行到执行结束都没有出现 OOM 的异常,这就是手动创建线程池的优势。

其他创建线程池的问题

除了 CachedThreadPool 线程池之外,其他使用 Executors 自动创建线程池的方式,也存在着其他一些问题,比如 FixedThreadPool 它的实现源码如下:

image.png


而默认情况下任务队列 LinkedBlockingQueue 的存储容量是 Integer.MAX_VALUE,也是趋向于无限大,如下图所示:

image.png


这样就也会造成,因为线程池的任务过多而导致的内存溢出问题。其他几个使用 Executors 自动创建线程池的方式也存在此问题,这里就不一一演示了。

总结

线程池的创建方式总共分为两大类:手动使用 ThreadPoolExecutor 创建线程池和自动使用 Executors 执行器创建线程池的方式。其中使用 Executors 自动创建线程的方式,因为线程个数或者任务个数不可控,可能会导致内存溢出的风险,所以在创建线程池时,建议使用 ThreadPoolExecutor 的方式来创建

是非审之于己,毁誉听之于人,得失安之于数。

公众号:Java面试真题解析

面试合集:https://gitee.com/mydb/interview

原文地址:https://www.cnblogs.com/vipstone/p/16033301.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


在 Java 语言中,提高程序的执行效率有两种实现方法,一个是使用线程、另一个是使用线程池。而在生产环境下,我们通常会采用后者。为什么会这样呢?今天我们就来聊聊线程池的优点,以及池化技术及其应用。 1.池化技术 池化技术指的是提前准备一些资源,在需要时可以重复使用这些预先准备的资源。 池化技术的优点
在 Java 中停止线程的实现方法有以下 3 种: 自定义中断标识符,停止线程。 使用线程中断方法 interrupt 停止线程。 使用 stop 停止线程。 其中 stop 方法为 @Deprecated 修饰的过期方法,也就是不推荐使用的过期方法,因为 stop 方法会直接停止线程,这样就没有给
在多线程编程中,wait 方法是让当前线程进入休眠状态,直到另一个线程调用了 notify 或 notifyAll 方法之后,才能继续恢复执行。而在 Java 中,wait 和 notify/notifyAll 有着一套自己的使用格式要求,也就是在使用 wait 和 notify(notifyAll
在 Java 语言中,并发编程都是通过创建线程池来实现的,而线程池的创建方式也有很多种,每种线程池的创建方式都对应了不同的使用场景,总体来说线程池的创建可以分为以下两类: 通过 ThreadPoolExecutor 手动创建线程池。 通过 Executors 执行器自动创建线程池。 而以上两类创建线
sleep 方法和 wait 方法都是用来将线程进入休眠状态的,并且 sleep 和 wait 方法都可以响应 interrupt 中断,也就是线程在休眠的过程中,如果收到中断信号,都可以进行响应,并抛出 InterruptedException 异常。那 sleep 和 wait 的区别都有哪些呢
在 Java 中,线程的创建方法有 7 种,分为以下 3 大类: 继承 Thread 类的方式,它有 2 种实现方法。 实现 Runnable 接口的方式,它有 3 种实现方法。 实现 Callable 接口的方式,它有 2 种实现方法。 接下来我们一个一个来看。 1.继承Thread类 继承 Th
所谓的线程池的 7 大参数是指,在使用 ThreadPoolExecutor 创建线程池时所设置的 7 个参数,如以下源码所示: public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
在 Java 语言中,线程分为两类:用户线程和守护线程,默认情况下我们创建的线程或线程池都是用户线程,所以用户线程也被称之为普通线程。 想要查看线程到底是用户线程还是守护线程,可以通过 Thread.isDaemon() 方法来判断,如果返回的结果是 true 则为守护线程,反之则为用户线程。 我们
聊到线程池就一定会聊到线程池的执行流程,也就是当有一个任务进入线程池之后,线程池是如何执行的?我们今天就来聊聊这个话题。线程池是如何执行的?线程池的拒绝策略有哪些? 线程池执行流程 想要真正的了解线程池的执行流程,就得先从线程池的执行方法 execute() 说起,execute() 实现源码如下:
单例模式是面试中的常客了,它的常见写法有 4 种:饿汉模式、懒汉模式、静态内部类和枚举,接下来我们一一来看。 1.饿汉模式 饿汉模式也叫预加载模式,它是在类加载时直接创建并初始化单例对象,所以它并不存在线程安全的问题。它是依靠 ClassLoader 类机制,在程序启动时只加载一次,因此不存在线程安
线程安全是指某个方法或某段代码,在多线程中能够正确的执行,不会出现数据不一致或数据污染的情况,我们把这样的程序称之为线程安全的,反之则为非线程安全的。在 Java 中,解决线程安全问题有以下 3 种手段: 使用线程安全类,比如 AtomicInteger。 加锁排队执行 使用 synchronize
在 Java 语言中,保证线程安全性的主要手段是加锁,而 Java 中的锁主要有两种:synchronized 和 Lock,我们今天重点来看一下 synchronized 的几种用法。 用法简介 使用 synchronized 无需手动执行加锁和释放锁的操作,我们只需要声明 synchronize
在 Java 语言中,有两个线程池可以执行定时任务:ScheduledThreadPool 和 SingleThreadScheduledExecutor,其中 SingleThreadScheduledExecutor 可以看做是 ScheduledThreadPool 的单线程版本,它的用法和
从公平的角度来说,Java 中的锁总共可分为两类:公平锁和非公平锁。但公平锁和非公平锁有哪些区别?孰优孰劣呢?在 Java 中的应用场景又有哪些呢?接下来我们一起来看。 正文 公平锁:每个线程获取锁的顺序是按照线程访问锁的先后顺序获取的,最前面的线程总是最先获取到锁。 非公平锁:每个线程获取锁的顺序
单例模式的实现方法有很多种,如饿汉模式、懒汉模式、静态内部类和枚举等,当面试官问到“为什么单例模式一定要加 volatile?”时,那么他指的是为什么懒汉模式中的私有变量要加 volatile? 懒汉模式指的是对象的创建是懒加载的方式,并不是在程序启动时就创建对象,而是第一次被真正使用时才创建对象。
读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。总结来说,读写锁的特点是:读读不互斥、读写互斥、写写互斥。 1.读写锁使用 在
很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作。对于线程 Thread 来说,很好实现,加一个 join 方法就解决了,然而对于线程池的判断就比较麻烦了。 我们本文提供 4 种判断线程池任务是否执行完的方法: 使用 isTerminated 方法判断。 使用 getCompl
在 Java 中,线程池的状态和线程的状态是完全不同的,线程有 6 种状态:NEW:初始化状态、RUNNABLE:可运行/运行状态、BLOCKED:阻塞状态、WAITING:无时限等待状态、TIMED_WAITING:有时限等待状态和 TERMINATED:终止状态。而线程池的状态有以下 5 种:
volatile 是 Java 并发编程的重要组成部分,也是常见的面试题之一,它的主要作用有两个:保证内存的可见性和禁止指令重排序。下面我们具体来看这两个功能。 内存可见性 说到内存可见性问题就不得不提 Java 内存模型,Java 内存模型(Java Memory Model)简称为 JMM,主要
1.第一范式 第一范式规定表中的每个列都应该是不可分割的最小单元。比如以下表中的 address 字段就不是不可分割的最小单元,如下图所示: 其中 address 还可以拆分为国家和城市,如下图所示: 这样改造之后,上面的表就满足第一范式了。 2.第二范式 第二范式是在满足第一范式的基础上,规定表中